NEW in 2018-19

- Advanced Project Management Workshop (pg 29)
- Applied Environmental Management Systems (pg 23)
- Management Systems Lead Auditor (pg 23)
- Managing Non-Technical Risks (pg 24)
- More Virtual/Blended Learning Options Through PetroAcademy, including:
 - Basics of Rotating and Static Mechanical Equipment (pg 14)
 - Gas Conditioning and Processing Principles (pg 6)
A competent workforce has always been critical for our industry’s success, but it is even more important with challenging product prices. Doing more with less is how we can thrive in hard times, but that requires a very competent workforce.

This guide presents the industry’s most comprehensive workforce development programs — focused on building competent people. PetroSkills brings together industry-driven and industry-approved programs that deliver flexible, practical, fit-for-purpose training and development. This guide can help you find ways to advance your technical competence and build your company’s value.

Since the first offerings of Production Operations 1 and the Campbell Gas Course® over 50 years ago, PetroSkills instructor-led training programs have set the standard for excellence from subsurface to downstream. This guide presents hundreds of sessions offered worldwide by top industry experts in each technical discipline across the value chain. Our competency-based programs are designed and delivered under the direction of the PetroSkills Alliance which includes some of the top petroleum companies worldwide, working together, to offer an industry-driven and vetted set of courses, products and services.

NEW courses to look for in this edition include:

- Advanced Project Management Workshop (APMW) - page 29
- Applied Environmental Management Systems (AEM) - page 23
- Management Systems Lead Auditor (AUD) - page 23
- Managing Non-Technical Risks (MNTR) - page 24

In addition to our instructor-led programs, our digital learning solutions and professional services continue to lead the industry. This guide outlines our electronic solutions ePilot™, ePetro™, ActiveLearner®, Compass® and PetroCore® - see page 3 for more details.

We are also proud to announce the expansion of our blended/virtual learning program, PetroAcademy™. This unique course model delivers the same competency development as our face-to-face courses via virtually delivered Skill Modules™, available from anywhere in the world.

The following blended/virtual courses are available now, and we will be adding more throughout 2019.

- Basic Petroleum Technology Principles - page 32
- Basics of Rotating and Static Mechanical Equipment - page 14
- Gas Conditioning and Processing Principles — page 6
- Process Safety Engineering — page 9
- Production Operations 1 — page 18
- Production Technology for Other Disciplines — page 18

For more information, see the back cover, or petroskills.com/blended.

I hope you find this guide useful. If there is any way that we can help you, your team, or your organization, please don’t hesitate to contact me personally at ford.brett@petroskills.com, or contact our Customer Service Department at +1.918.828.2500.

Course Progression Map

GAS PROCESSING

- Gas Conditioning and Processing (Campbell Gas Course®) — G4
- Gas Conditioning and Processing Principles - G3 (Virtual/Blended course)
- Gas Conditioning and Processing — LNG Emphasis — G4 LNG
- Gas Treating and Sulfur Recovery — G6
- LNG Short Course: Technology and the LNG Chain — G29
- Overview of Gas Processing — G2
- Practical Computer Simulation Applications in Gas Processing — G5

PROCESS FACILITIES

- Applied Water Technology in Oil and Gas Production — PF21
- CO₂ Surface Facilities — PF81
- Concept Selection and Specification of Production Facilities in Field Development Projects — PF3
- Fundamental and Practical Aspects of Produced Water Treating — PF23
- Fundamentals of Process Safety - PS2
- Introduction to Oil and Gas Production Facilities — PF2
- Oil Production and Processing Facilities — PF4
- Onshore Gas Gathering Systems: Design and Operations — PF45
- Process Safety Engineering — PS4
- Process Safety Engineering Principles - PSE (Virtual/Blended course)
- Relief and Flare Systems — PF44
- Risk Based Process Safety Management — HS45
- Separation Equipment - Selection and Sizing — PF42
- Troubleshooting Oil and Gas Processing Facilities — PF49

INSTRUMENTATION, CONTROLS & ELECTRICAL

- Electrical Engineering Fundamentals for Facilities Engineers — E3
- Flow and Level Custody Measurement — IC73
- Instrumentation and Controls Fundamentals for Facilities Engineers — IC3
- Instrumentation, Controls and Electrical Systems for Facilities Engineers — ICE21
- PLC and SCADA Technologies — IC71
- Practical PID Control and Loop Tuning — IC74
- Valve and Actuator Technologies — IC72

MECHANICAL ENGINEERING

- Basics of Rotating and Static Mechanical Equipment - RSM (Virtual/Blended course)
- Compressor Systems - Mechanical Design and Specification — ME46
- Corrosion Management in Production/Processing Operations — PF22
- Fundamentals of Pump and Compressor Systems — ME44
- Mechanical Specification of Pressure Vessels and Heat Exchangers — ME43
- Piping Systems - Mechanical Design and Specification — ME41
- Process Plant Reliability and Maintenance Strategies — REL5

PIPELINE ENGINEERING

- Offshore Pipeline Design and Construction — PL43
- Onshore Pipeline Facilities - Design, Construction and Operations — PL42
- Terminals and Storage Facilities — PL44
TABLE OF CONTENTS

OFFSHORE & SUBSEA
- 17 Flow Assurance for Offshore Production – FAOP
- 17 Fundamentals of Offshore Systems Design and Construction – OS4
- 17 Overview of Offshore Systems – OS21
- 17 Overview of Subsea Systems – SS2

PROCUREMENT/SUPPLY CHAIN MANAGEMENT
- 26 Contracts and Tenders Fundamentals – SC41
- 26 Effective Materials Management – SC42
- 27 Inside Procurement in Oil and Gas – SC61
- 27 Strategic Procurement and Supply Management in the Oil and Gas Industry – SC62
- 27 Supplier Relationship Management – SC63

PRODUCTION AND COMPLETIONS ENGINEERING
- 19 Gas Production Engineering – GP0
- 18 Production Operations 1 – PO1 (Also available as a Virtual/Blended course)
- 18 Production Technology for Other Disciplines – PTO (Also available as a Virtual/Blended course)
- 18 Surface Production Operations – PO3
- 19 Surface Water Management In Unconventional Resource Plays – SWM

OPERATIONS & MAINTENANCE
- 20 Amine Sweetening and Gas Dehydration for Operations and Maintenance - OT41
- 21 Applied Maintenance Management – OM21
- 21 Crude Oil Pipeline Operations – OT50
- 20 LNG Facilities for Operations and Maintenance – OT43
- 21 Maintenance Planning and Work Control – OM41
- 20 NGL Extraction, Stabilization and Fractionation for Operations and Maintenance - OT42
- 20 Oil and Gas Processing Facilities for Operations and Maintenance – OT1
- 21 Turnaround, Shutdown and Outage Management – TSOM

HEALTH, SAFETY, ENVIRONMENT
- 23 Applied Environmental Management Systems – AEM
- 22 Competent Person Fall Prevention – FPST
- 23 Management Systems Lead Auditor – AUD

PETROLEUM BUSINESS
- 25 Advanced Decision Analysis with Portfolio and Project Modeling – ADA
- 24 Basic Petroleum Economics – BEC3
- 24 Cost Management – CM
- 25 Economics of Worldwide Petroleum Production – EWP
- 24 Expanded Basic Petroleum Economics – BEC
- 26 Fundamentals of International Oil and Gas Law – IOG
- 23 Introduction to Petroleum Business – IPB
- 24 Managing Non-Technical Risks - MNTR
- 25 Petroleum Finance and Accounting Principles – PFA
- 26 Petroleum Risk and Decision Analysis – PRD
- 26 Strategic Thinking: A Tool-Based Approach – STT

PROJECT MANAGEMENT
- 29 Advanced Project Management – FPM62
- 29 Advanced Project Management II – FPM63
- 29 Advanced Project Management Workshop - APMW
- 28 Managing Brownfield Projects – FPM42
- 28 Managing Project Controls for Contractors and Owners - PC21
- 28 Project Management for Engineering and Construction – FPM22
- 29 Turnaround, Shutdown and Outage Management – TSOM

PETROLEUM PROFESSIONAL DEVELOPMENT
- 30 Essential Leadership Skills for Technical Professionals – OM23
- 30 Essential Technical Writing Skills – ETWS
- 31 Making Change Happen; People and Process – MCPP
- 30 Managing and Leading Others – MLO
- 31 Meeting Management and Facilitation for the Petroleum Industry – MMF
- 31 Negotiation Skills for the Petroleum Industry – NSPI
- 31 Presentation Skills for the Petroleum Industry – PSPI
- 31 Team Building for Intact Teams – TB
- 30 Team Leadership – TLS

MULTI-DISCIPLINE TRAINING
- 32 Basic Petroleum Technology – BPT
- 32 Basic Petroleum Technology Principles – BPTP (Virtual/Blended course)
- 32 Overview of the Petroleum Industry – OVP

33 INSTRUCTOR BIOGRAPHIES

PETROSKILLS SPECIAL FEATURES
- 2 PetroSkills Alliance
- 3 PetroSkills Solutions - Competency Development
- 4 Facilities Course Progression Map
- 11 In-House Training
- 13 PetroSkills Conference Center
- 15 Sign Up for Emails
- 16 ePilot - Midstream Operations and Pipeline e-Learning
- 19 In-House Training
- 22 ePilot - EHS e-Learning
- 32 Sign Up for Emails
- 40 Tip of the Month
- **Inside Back Cover** Contacts and Registration
- **Inside Back Cover** CEU/PDH Certificates
- **Back Cover** PetroAcademy - Blended Learning Solutions

Any course is available inhouse at your location. Contact us today.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
Mission: Build competent petroleum professionals by delivering learning and development when, where, and how customers need it.

OBJECTIVES:
- Provide the highest quality, business relevant programs that span all technical processes, and give management assurance they have the skilled people needed to maximize asset value
- Offer added value to employees via new, broad-reaching courses that fill gaps, deliver the ability to perform, and provide the assurance to prove it
- Ensure PetroSkills instructors are the best available
- Develop and continuously improve PetroSkills Competency Maps and progression trees; continue to align Competency Maps with corporate business goals
- Lower internal training costs by reducing administrative burdens, improving economies of scale, and/or eliminating marginal courses
- Increase the availability of courses in both the number of offerings and the number of delivery locations, thereby delivering competencies at the lowest total cost

For more information on membership, go to petroskills.com/membership
How do you meet the challenges of competency development?

PetroSkills Solutions

PetroAcademy™
Blended Learning Skill Modules. Integrating live classroom activities, online learning and technical coaching.

ePilot™ and ePetro™
e-Learning. Online learning libraries deliver effective training anytime, anywhere.

Competency Maps
Industry Benchmarks. Developed with industry-leading Alliance members.

ActiveLearner™
Learning and Compliance Management System. Online, on-the-job access to learning programs, progress tracking, and curriculum development.

Compass®
Competency Management. Web-based software that builds, manages, and assures competency.

PetroCore®
Technical Reference. Online, on-demand access to technical knowledge, documents, and articles.

petroskills.com/solutions
Facilities Course Progression Map

<table>
<thead>
<tr>
<th>Oil and Gas Processing</th>
<th>Process Safety</th>
<th>Instrumentation, Controls & Electrical</th>
<th>Offshore & Subsea</th>
<th>Pipeline Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>Oil / Water</td>
<td>General Processing</td>
<td>Electrical</td>
<td>Instrumentation & Controls</td>
</tr>
<tr>
<td>Gas Conditioning and Processing</td>
<td>Process Safety</td>
<td>Instrumentation, Controls & Electrical</td>
<td>Offshore & Subsea</td>
<td>Pipeline Engineering</td>
</tr>
<tr>
<td>Practical Computer Simulation Applications in Gas Processing – G5 p.7</td>
<td>Gas Conditioning and Processing – G4 p.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troubleshooting Oil and Gas Processing Facilities – PF49 p.11</td>
<td>Oil Production and Processing Facilities – PF4 p.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental and Practical Aspects of Produced Water Treating – PF23 p.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Water Technology in Oil and Gas Production – PF21 p.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Safety Engineering – PS4 p.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Based Process Safety Management – HS45 p.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Process Safety – PS2 p.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering Fundamentals for Facilities Engineers – E3 p.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumentation and Controls Fundamentals for Facilities Engineers – IC3 p.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumentation, Controls and Electrical Systems for Facilities Engineers – ICE21 p.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLC and SCADA Technologies – IC71 p.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Assurance for Offshore Production – FAQP p.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore Pipeline Design and Construction – PL43 p.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrosion Management in Production/Processing Operations – PF22 p.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNG Short Course: Technology and the LNG Chain – G29 p.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overview of Gas Processing – G2 p.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Oil and Gas Production Facilities – PF2 p.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept Selection and Specification of Production Facilities in Field Development Projects – PF3 p.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Safety Engineering Principles – PSE Virtual/Blended Course p.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overview of Subsea Systems – OS2 p.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overview of Offshore Systems – OS21 p.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Facilities Course Progression Map

<table>
<thead>
<tr>
<th>Mechanical Engineering</th>
<th>Operations & Maintenance</th>
<th>Project Mgmt.</th>
<th>Procurement/Supply Chain Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Rotating</td>
<td>Rotating</td>
<td>Reliability</td>
<td>O&M Management</td>
</tr>
<tr>
<td>Compressor Systems - Mechanical Design and Specification – ME46 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Specification of Pressure Vessels and Heat Exchangers – ME43 p.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piping Systems - Mechanical Design and Specification – ME41 p.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Pump and Compressor Systems – ME44 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Plant Reliability and Maintenance Strategies – REL5 p.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Campbell Gas Course® has been the standard for more than 50 years and the core competencies of the Campbell Gas Course are now available in self-paced online Skill Modules™. These competencies set the foundation for the Campbell Gas Course® curriculum. The Skill Modules provide an understanding of the fundamental principles of gas processing systems, and the primary unit operations in both offshore and onshore gas conditioning and processing facilities.

COURSE CONTENT
- Gas processing systems
- Physical properties of hydrocarbons
- Terminology and nomenclature
- Qualitative phase behavior
- Vapor-liquid equilibrium
- Water-hydrocarbon phase behavior, hydrates, etc.
- Basic thermodynamics and application of energy balances
- Process control and instrumentation
- Relief and flare systems
- Fluid hydraulics, two-phase flow
- Separation equipment
- Heat transfer equipment
- Pumps
- Compressors and drivers
- Refrigeration in gas conditioning and NGL extraction facilities
- Fractionation
- Glycol dehydration; TEG
- Adsorption dehydration and hydrocarbon removal
- Gas heating and sulfur recovery
- Overview and summary

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABERDEEN, UK</td>
<td>3-14 SEPT 2018</td>
<td>$9620+VAT</td>
</tr>
<tr>
<td></td>
<td>11-22 MAR 2019</td>
<td>$9910+VAT</td>
</tr>
<tr>
<td></td>
<td>9-20 SEPT 2019</td>
<td>$9910+VAT</td>
</tr>
<tr>
<td>BRISBANE, AUS</td>
<td>12-23 NOV 2018</td>
<td>$9900+GST</td>
</tr>
<tr>
<td></td>
<td>17-28 JUNE 2019</td>
<td>$9900+GST</td>
</tr>
<tr>
<td>CALGARY, CANADA</td>
<td>13-24 MAR 2019</td>
<td>$8845+GST</td>
</tr>
<tr>
<td>DENVER, US</td>
<td>3-14 JUNE 2019</td>
<td>$8945</td>
</tr>
<tr>
<td></td>
<td>7-18 OCT 2019</td>
<td>$8945</td>
</tr>
<tr>
<td>DOHA, QATAR</td>
<td>31 MAR-11 APR 2019</td>
<td>$9810</td>
</tr>
<tr>
<td>DUBAI, UAE</td>
<td>4-15 NOV 2018</td>
<td>$8920+VAT</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>3-14 DEC 2018</td>
<td>$8790</td>
</tr>
<tr>
<td></td>
<td>1-12 APR 2019</td>
<td>$8835</td>
</tr>
<tr>
<td></td>
<td>5-16 AUG 2019</td>
<td>$8835</td>
</tr>
<tr>
<td></td>
<td>2-13 DEC 2019</td>
<td>$8835</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>19-21 DEC 2018</td>
<td>$9720</td>
</tr>
<tr>
<td></td>
<td>22 JUL-2 AUG 2019</td>
<td>$9915</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>24 SEP-5 OCT 2018</td>
<td>$9620+VAT</td>
</tr>
<tr>
<td></td>
<td>8-19 JULY 2019</td>
<td>$9910+VAT</td>
</tr>
<tr>
<td></td>
<td>18-29 NOV 2019</td>
<td>$9910+VAT</td>
</tr>
<tr>
<td>PERTH, AUSTRALIA</td>
<td>22 OCT-2 NOV 2018</td>
<td>$8900+GST</td>
</tr>
<tr>
<td></td>
<td>19-30 AUS 2019</td>
<td>$9955+GST</td>
</tr>
<tr>
<td>PITTSPURGH, US</td>
<td>9-20 DEC 2019</td>
<td>$9955+GST</td>
</tr>
<tr>
<td></td>
<td>16-29 MAR 2019</td>
<td>$8945</td>
</tr>
<tr>
<td>STRANGER, NOR</td>
<td>26 NOV-7 DEC 2018</td>
<td>$9620</td>
</tr>
<tr>
<td></td>
<td>4-15 NOV 2019</td>
<td>$9910</td>
</tr>
</tbody>
</table>

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERTH, AUS</td>
<td>1-12 APR 2019</td>
<td>$9995+GST</td>
</tr>
</tbody>
</table>

This course will be delivered virtually through PetroAcademy providing participants with the knowledge they need at their convenience.

DESIGN FOR
Facilities engineers, process engineers, senior operations personnel, field supervisors, and engineers who select, design, install, evaluate, or operate gas processing plants and related facilities.

SKILL MODULES
- Hydrocarbon Components and Physical Properties
- Introduction to Production and Gas Processing Facilities
- Qualitative Phase Behavior and Vapor Liquid Equilibrium
- Water/Hydrocarbon Phase Behavior
- Thermodynamics and Application of Energy Balances
- Fluid Flow
- Relief and Flare Systems
- Separation
- Heat Transfer Equipment Overview
- Pumps and Compressors Overview
- Refrigeration, NGL Extraction, and Fractionation
- Contaminant Removal - Gas Dehydration
- Contaminant Removal - Acid Gas and Mercury Removal

Self-paced, virtual course - start anytime.
Overview of Gas Processing – G2

BASIC 3-DAY

G2 is a versatile overview of the gas conditioning and processing industry. This course is designed for a broad audience and is participative and interactive, utilizing basic technical exercises and terminology to communicate key learning points. This course does not cover the technology and engineering principles in detail, and is only recommended for those needing an overview of the industry and common processes and equipment used.

DESIGNED FOR

As a wide ranging overview, it is suitable for interested parties, such as geologists, reservoir engineers, line managers, and sales or business development staff; related specialists like environmental staff, operational staff, and shift foremen; those new to the industry, such as entry-level (1-2 year) engineers; or anyone interested in a general, technically-oriented overview of the gas processing industry.

YOU WILL LEARN

- An overview of natural gas and world energy trends
- Natural gas sources, makeup, properties, specifications, and related oil and gas terminology
- Markets and uses for NGL, LPG, ethane, propane, and butane
- Summary of gas processing costs, and commercial and contract issues in liquids extraction
- How gas is transported and sold
- Overview of the commercial equipment used in the oil and gas industry, including heat exchangers, pumps, and compressors
- Options for various basic gas conditioning and processing steps, including acid gas removal, dehydration, liquid extraction, product fractionation, LNG overview, pipelines, sulfur recovery, and acid gas injection

COURSE CONTENT

Natural gas and world energy trends • Hydrocarbon components and physical properties • The role of gas processing in the natural gas value chain • Heat transfer equipment • Pumps and compressors • Acid gas removal • Gas dehydration • NGL extraction • Fractionation and stabilization • LNG • Pipelines and storage • Sulfur recovery and acid gas injection

LNG Short Course: Technology and the LNG Chain – G29

BASIC 5-DAY

This LNG Short Course is designed for participants requiring moderate technical coverage, coupled with information on LNG commerce and all parts of the LNG Value Chain. Over 5-days, the course covers technical LNG basics and facility operation topics, plus technical, design, and commercial issues. Selected exercises and syndicates are used to reinforce the main topics of LNG trade and technology. In house versions are available with either increased technical and operational emphasis or increased project and development emphasis. More in-depth coverage for technical, production, and processing personnel is available in our 10-day course, G4 LNG, Gas Conditioning and Processing - LNG emphasis.

DESIGNED FOR

Commercial and managerial staff looking for a concise overview; engineers new to the LNG industry; operations supervision staff and senior plant personnel; specialists looking to broaden their general knowledge of LNG; and staff involved in LNG commerce and interested in LNG technical fundamentals.

YOU WILL LEARN

- What is LNG, why it is produced, and what is the current status of the industry
- LNG facilities world-wide
- The LNG chain and impact of contractual issues on LNG plant design and operation; LNG project economics
- A survey of commercial and contractual issues
- Project costs, feasibility, development, and issues
- Some technical fundamentals of gas processing, such as molecular weight, heating value, Wobbe Index, vapor pressure, multi-component mixtures, thermodynamics
- Refrigeration: single and multi-component refrigeration cycles
- Technologies used in the production of LNG for base-load and small scale production, issues relating to technology selection, and operation
- Equipment used in the production of LNG: heat exchangers, compressors and drivers used for LNG, pumps, and turboexpanders
- To apply knowledge of LNG gas pretreatment, drying, and refrigeration
- About LNG storage, shipping, and terminals, sizing basis, and small scale tanks
- Types of LNG carriers, marine management issues, and LNG transfer
- LNG importing, regasification of LNG and distribution to consumers, basis for sizing, technology selection, and energy integration
- New developments: development of offshore LNG operations to regasification and liquefaction, coal seam gas project issues
- Site selection and HSSE considerations

COURSE CONTENT

What LNG is and where it comes from • Physical properties of LNG • Vapor-liquid equilibrium behavior of LNG and refrigerants • Gas pre-treatment • Heat exchangers • Refrigeration • Rotating machinery • Liquidation processes • LNG storage • LNG shipping • LNG importing

Practical Computer Simulation Applications in Gas Processing – G5

BASIC 5-DAY

This full 5-day course covers sweet gas processing and NGL extraction, using a commercial simulator to perform calculations. A basic working knowledge of the commercial process simulation package used generally (UNISIM) is suggested to achieve the course learning objectives. Volumes 1 and 2 of the John M. Campbell textbooks, Gas Conditioning and Processing, are the basis for the material presented; coupled with a "red thread" comprehensive exercise based on a typical gas processing facility (can be applied to onshore or offshore facilities). The exercise is developed in stages as the material is covered. Participants will develop a comprehensive process simulation that includes a data point control process, a mechanical refrigeration process with economizers, hydrate inhibition using MEG, and NGL liquid product stabilization with recycle.

NOTE: The individual exercises include condensed gas processing fundamentals drawn from the internationally famous Campbell Gas Course® textbooks Volumes 1 & 2.

DESIGNED FOR

Engineers that require practical in-depth training on natural gas processing and NGL recovery processes, with emphasis on the use and benefits of a simulation package.

YOU WILL LEARN

- To determine the water content and hydrate formation conditions for gas streams using both a commercial process simulator and hand calculation methods
- Techniques to inhibit hydrate formation, including injection of equilibrium inhibitors such as methanol and MEG
- Preliminary design and evaluation of TEG dehydration processes using quick hand calculations
- Process design used to control the hydrocarbon dew point of sales gas streams by removing NGLs using mechanical refrigeration processes
- Various techniques to optimize mechanical refrigeration systems
- How to use the process simulator to evaluate the impact that pressure and temperature changes have on the sizing of process equipment and levels of recovery
- How to use short-cut distillation calculations to provide input to rigorous distillation simulations in order to obtain faster convergence
- Which thermodynamic property correlations are appropriate for various gas processing systems
- Limitations associated with commercial simulation packages and how the results can be quickly checked for relative accuracy

COURSE CONTENT

Physical properties of hydrocarbons • Qualitative phase behavior • Vapor-liquid equilibrium • Water-hydrocarbon equilibrium • Basic thermodynamic concepts • Separation equipment • Heat transfer • Pumps • Compressors • and more

Gas Treating and Sulfur Recovery – G6

INTERMEDIATE 5-DAY

This course emphasizes process selection, practical operating issues, technical fundamentals, and integration of the sweetening facilities into the overall scheme of gas processing. Sulfur recovery and tail gas processes are also covered, including standard Claus configurations, SuperClaus, EuroClaus, SCOT, etc. Special design and operation topics, such as trace sulfur compound handling and the importance of H2S:CO2 ratios, are covered as well. Related topics reviewed during the course include liquid product treating, corrosion, materials selection, and NACE requirements.

DESIGNED FOR

Production and processing personnel involved with natural gas treating and sulfur recovery, requiring an understanding of the principles of these processes operating. These are for facilities engineers, process engineers, operations personnel, and field supervisors, as well as others who select, design, install, evaluate, or operate gas sweetening and sulfur recovery facilities.

YOU WILL LEARN

- Evaluation and selection of processes to remove acid gases (H,S, CO2, COS, CS2, mercaptans, etc.) from gas and NGLs
- The advantages and disadvantages of available gas treating technology and processes
- How to estimate solvent circulation rates, energy requirements, and equipment sizes
- To recognize and evaluate solutions to common operating and technical problems
- Sulfur recovery technologies, including an overview of the Claus Sulfur process
- How to select among the proper sulfur recovery process given differing process conditions
- Tail gas cleanup

COURSE CONTENT

Fundamentals of sour gas processing, sweetening, etc. • Overview of gas treating and sulfur recovery, terminology • Gas specifications and process selection criteria • Generic and specialty amine treating • Common operating and technical problems • Proprietary amine solvents, such as Sulfinol and Flexsorb • Carbonate processes • Physical absorption processes, e.g. Selexol • Metallurgical issues • Physical absorption processes • Generic and selective amine treating • Sweet gas treating technology and processes

YOU WILL LEARN

- To determine the water content and dry gas composition for gas streams using both a commercial process simulator and hand calculation methods
- Understanding the impact of pressure and temperature changes on the sizing of process equipment and levels of recovery
- How to use short-cut distillation calculations to provide input to rigorous distillation simulations in order to obtain faster convergence
- Which thermodynamic property correlations are appropriate for various gas processing systems
- Limitations associated with commercial simulation packages and how the results can be quickly checked for relative accuracy

COURSE CONTENT

Physical properties of hydrocarbons • Qualitative phase behavior • Vapor-liquid equilibrium • Water-hydrocarbon equilibrium • Basic thermodynamic concepts • Separation equipment • Heat transfer • Pumps • Compressors • and more...
Introduction to Oil and Gas Production Facilities – PF2

BASIC 3-DAY

The scope of the discussion ranges from an overview of the oil and gas industry, hydrocarbon phase behavior characteristics, and different reservoir types, to product specifications and the processes used to meet these. Other facilities considerations are addressed, such as process safety and downstream processing that may impact the production facility selection and operation.

DESIGNED FOR

Those interested in an overview of production facilities, including subsurface professionals, line managers, sales or business development staff, environmental personnel, operational staff, and those new to the industry.

YOU WILL LEARN

- How the reservoir type, drive mechanism, fluid properties, location, and product specifications influence the selection and design of the production facilities
- How to do “quick back of the envelope” calculations to better understand equipment sizing and capacity
- Parameters that affect the design and specification of oil stabilization and dehydration equipment
- Awareness of the parameters that determine flowline/gathering system capacity
- The purpose of separators in a production facility and familiarly with the typical configurations
- Typical design parameters, operating envelopes, common operating problems of oil and gas production equipment, and the effect of changing feed conditions over the life of a field
- To describe oil dehydration/desalting process options and equipment
- Produced water treating options and the dependence on surface vs. subsurface, offshore vs. onshore disposal
- Compressor performance characteristics and how they affect production rates and facility throughput
- Gas dehydration process options, with a particular emphasis on glycol dehydration
- The principles of asset integrity and inherently safe design given the rate, composition, temperature, and pressure of the production stream
- About midstream facilities required downstream of the primary production facility to deliver saleable products to the market, and how these facilities are affected by production rates, composition, and production facility performance

COURSE CONTENT

Overview of oil and gas industry • Qualitative phase behavior and reservoirs • Hydrocarbon properties and terminology • Typical sales/disposal specifications • Flowlines, piping and gathering systems • Production separation • Oil processing • Water injection systems (including pumps) • Gas handling – compression, dehydration • Measurement and storage • Other facilities considerations – utilities, process safety • Midstream facilities – gas processing, pipelines, LNG

Concept Selection and Specification of Production Facilities in Field Development Projects – PF3

BASIC 5-DAY

This course is similar to Introduction to Oil and Gas Production Facilities (PF-2), but is presented in the context of concept selection and front-end field development planning.

DESIGNED FOR

This course is intended for those working on field development teams, as well as those who need to better understand how surface facilities are selected and how subsurface characteristics affect facility design and specification.

YOU WILL LEARN

- How to develop the project framework and decision making strategy
- How the specification of production/processing facilities is influenced by reservoir type, drive mechanism, fluid properties, location, and contractual obligations
- Operating conditions that affect the specification of the production facilities from the wellhead through initial separation
- Parameters that affect the design and specification of oil stabilization and dehydration equipment
- The design and specification of produced water systems appropriate for the rate and composition of the produced water to meet the required environmental regulations and/or injection well capacity
- The design and specification of gas handling facilities, including compression dehydration and sweetening
- The impact of artificial lift systems and secondary/tertiary production projects on facilities selection and design
- The principles of asset integrity and inherently safe design given the rate, composition, temperature, and pressure of the production stream
- About midstream facilities required downstream of the primary production facility to deliver saleable products to the market, and how these facilities are affected by production rates, composition, and production facility performance

COURSE CONTENT

Reservoir types, fluid properties, and typical product specifications • Flowlines, gathering systems, flow assurance, and production separation • Oil dehydration and stabilization • Produced water treating and water injection systems • Gas handling, including compression, dehydration, and sweetening • The effect of artificial lift systems, and secondary and tertiary recovery projects • Midstream facilities – gas processing, pipelines, product storage, and LNG • Other facility considerations – utility systems, process safety and asset integrity, and environmental regulations

Oil Production and Processing Facilities – PF4

FOUNDATION 10-DAY

The emphasis of this course is on oil production facilities - from the wellhead, to the delivery of a specification crude oil product, to the refinery. Both onshore and offshore facilities are discussed. Produced water treating and water injection systems are also covered. Solution gas handling processes and equipment will be discussed at a relatively high level. In addition to the engineering aspects of oil production facilities, practical operating problems will also be covered, including emulsion treatment, sand handling, dealing with wax and asphaltenes, etc. Exercises requiring calculations are utilized throughout the course. The course is intended to complement the G-4 Gas Conditioning and Processing course, focused on the gas handling side of the upstream oil and gas facilities area.

DESIGNED FOR

Process/facilities engineers and senior operating personnel involved with the design and operation of oil and produced water processing facilities.

YOU WILL LEARN

- Well inflow performance and its impact on production/processing facilities
- About oil, gas, and water compositions and properties needed for equipment selection and sizing
- How to select and evaluate processes and equipment used to meet sales or disposal specifications
- To apply physical and thermodynamic property correlations and principles to the design and evaluation of oil production and processing facilities
- How to perform equipment sizing calculations for major production facility separation equipment
- To evaluate processing configurations for different applications
- How to recognize and develop solutions to operating problems in oil/water processing facilities

COURSE CONTENT

- Reservoir traps, rocks, and drive mechanisms
- Phase envelopes and reservoir fluid classification
- Well inflow performance
- Artificial lift
- Gas, oil, and water - composition and properties
- Oil gathering systems
- Gas-liquid separation
- Emulsions
- Oil-water separation
- Oil treating
- Desalting
- Oil stabilization and sweetening
- Oil storage and vapor recovery
- Sand, wax, asphaltene, and scale
- Transportation of crude oil
- Produced water treatment
- Water injection systems
- Solution gas handling

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Course</th>
<th>Date</th>
<th>Location</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Oil and Gas Production Facilities – PF2</td>
<td>1-3 OCT 2018</td>
<td>HOUSTON, US</td>
<td>$3105</td>
</tr>
</tbody>
</table>

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Course</th>
<th>Date</th>
<th>Location</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Oil and Gas Production Facilities – PF2</td>
<td>1-12 APR 2019</td>
<td>BAKERSFIELD, US</td>
<td>$8845</td>
</tr>
<tr>
<td>Oil Production and Processing Facilities – PF4</td>
<td>9-20 DEC 2018</td>
<td>DUBAI, UAE</td>
<td>$9525+VAT</td>
</tr>
<tr>
<td></td>
<td>26 NOV-7 DEC 2018</td>
<td>HOUSTON, US</td>
<td>$6760</td>
</tr>
<tr>
<td></td>
<td>11-22 NOV 2019</td>
<td>HOUSTON, US</td>
<td>$8935</td>
</tr>
<tr>
<td></td>
<td>1-12 JULY 2019</td>
<td>KUALA LUMPUR, MYS</td>
<td>$8935+VAT</td>
</tr>
<tr>
<td></td>
<td>5-16 NOV 2018</td>
<td>LONDON, UK</td>
<td>$8760+VAT</td>
</tr>
<tr>
<td></td>
<td>2-13 SEP 2019</td>
<td>LONDON, UK</td>
<td>$8935+VAT</td>
</tr>
</tbody>
</table>
Process Safety Engineering Principles – PSE

Foundation

5-DAY

The course will cover the fundamentals of Process Safety and Risk Based Process Safety in all levels of processing facilities in the oil and gas industry, including petrochemical facilities. Key topics include:

- Process Safety Risk Analysis and Inherently Safer Design
- Process Hazards Analysis
- Layers of Protection analysis
- Management of Change
- Incident Investigation
- Development and managing process safety

YOU WILL LEARN HOW TO

- Identify and model root causes of incidents
- Recognize and develop systems to manage risk
- Manage risk through integrated process safety

COURSE CONTENT

- Process Safety Risk Analysis and Inherently Safer Design
- Process Hazards Analysis
- Layers of Protection analysis
- Management of Change
- Incident Investigation
- Development and managing process safety

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBAI, UAE</td>
<td>16-20 DEC 2018</td>
<td>$5400 + VAT</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>24-28 NOV 2019</td>
<td>$5600 + VAT</td>
</tr>
<tr>
<td>KUALA LUMPUR, MY</td>
<td>14-18 OCT 2019</td>
<td>$5985 + GST</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>21-25 OCT 2019</td>
<td>$5760 + VAT</td>
</tr>
</tbody>
</table>

FOR MORE INFORMATION, VISIT

PETROS KILLS.COM/PROCESS-SAFETY-BLENDED
Applied Water Technology in Oil and Gas Production – PF21

Foundation 5-DAY

This course provides an overview of the main water handling systems typically encountered in upstream (E&P) production operations, both onshore and offshore. The chemistry of the main water-related problems of mineral scales, corrosion, bacteria, and oily water will be reviewed both from the theoretical and practical aspects. Produced water treatment equipment and typical water quality specifications will also be reviewed, as well as water injection and disposal systems. An exercise will be given to identify typical system problems and to apply the knowledge you gained to propose solutions. Emphasis will be placed on understanding and resolving operational problems in process equipment.

DESIGNED FOR
Managers, engineers, chemists, and operators needing to understand water-related problems in oil and gas production and their solutions.

YOU WILL LEARN
- The basics of oilfield water chemistry
- How to monitor and control corrosion, scale, and bacterial growth in produced water and water injection/disposal systems
- How to implement system surveillance programs to detect potential problems before system damage occurs
- Produced (oily) water treatment options and related treatment equipment
- How to use the knowledge gained to identify typical system problems and be able to propose solutions

COURSE CONTENT
- Water chemistry fundamentals • Water sampling and analysis • Water formed scales • Corrosion control • Water treatment microbiology • Produced water discharged/disposal and treatment principles • Produced water treatment equipment - theory of operation, advantages and disadvantages, and the importance of oil droplet size • Water injection and disposal systems - theory of operation, corrosion, scale, and biological control • Case study

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houston, US</td>
<td>23-27 Jun 2019</td>
<td>$4250</td>
</tr>
<tr>
<td>Houston, US</td>
<td>10-14 Aug 2019</td>
<td>$4250</td>
</tr>
<tr>
<td>Houston, US</td>
<td>24-28 Sep 2019</td>
<td>$4250</td>
</tr>
<tr>
<td>Houston, US</td>
<td>22-26 Nov 2019</td>
<td>$4250</td>
</tr>
<tr>
<td>Kuala Lumpur, Malaysia</td>
<td>6-10 Dec 2019</td>
<td>$4900+VAT</td>
</tr>
<tr>
<td>London, UK</td>
<td>26-30 Jan 2020</td>
<td>$5600</td>
</tr>
<tr>
<td>Perth, Australia</td>
<td>23-27 Mar 2020</td>
<td>$5310+VAT</td>
</tr>
<tr>
<td>Houston, US</td>
<td>19-23 Aug 2019</td>
<td>$4250</td>
</tr>
<tr>
<td>London, UK</td>
<td>1-5 Apr 2019</td>
<td>$5065+VAT</td>
</tr>
</tbody>
</table>

Fundamental and Practical Aspects of Produced Water Treatment – PF23

Foundation 5-DAY

This course covers topics related to Produced Water Treatment in upstream oil and gas operations. Produced water composition and physical properties are covered. Water quality requirements for various disposal methods are addressed, including onshore surface discharge, offshore discharge to sea, and reinjection for disposal or freshwater. Regulatory requirements and analytical methods used to monitor and ensure regulatory compliance are discussed. Treatment technology is presented along with practical considerations for selecting and operating typical water treatment equipment. Representative process flow diagrams illustrate equipment selection, design features, layout, and processes. Chemical treatment options are also considered.

DESIGNED FOR
Managers, engineers, chemists, and senior operations personnel responsible for designing, operating, and maintaining facilities that process and manage produced water. This course will provide participants with an understanding of the technical aspects required to select, design, maintain, and troubleshoot produced water equipment.

YOU WILL LEARN
- How produced water compositions affect water treatment system design and performance
- How to interpret produced water analytical data and calculate common Scale Indices
- How emissions form and contribute to water treatment challenges
- How Total Suspended Solids (TSS) affects water quality and what to do about it
- What water quality is required for surface or overhead disposal, for injection disposal, or for beneficial use
- The regulatory requirements for offshore water disposal and what is in an NPDES Permit
- What analytical methods actually measure and how to select an appropriate method
- How separators, clarifier tanks, CPIs, hydrocyclones, flotation cells, and bed filtration work and how to improve their performance
- The most common causes of water treating problems and how to diagnose and resolve them
- Typical PFDS used to illustrate operational issues

COURSE CONTENT
- Introduction to water treatment technology and issues • Produced water chemistry and characterization • Defining and characterizing emulsions that impact water quality and treatment • Water quality requirements for injection or surface disposal, NPDES permits, analytical methods • Primary water treatment technologies - separators, hydrocyclones, and CPIs • Secondary water treatment - induced gas flotation • Tertiary water treatment technologies - media and membrane filtration • Chemicals and chemical treatment • Diagnostic testing and in-field observations • Diagnosing and resolving water treatment issues based on actual field experiences

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houston, US</td>
<td>5-9 Nov 2018</td>
<td>$4240</td>
</tr>
<tr>
<td>Houston, US</td>
<td>20-24 Mar 2019</td>
<td>$4250</td>
</tr>
<tr>
<td>Houston, US</td>
<td>6-10 Oct 2018</td>
<td>$4390</td>
</tr>
</tbody>
</table>

Separation Equipment - Selection and Sizing – PF42

Intermediate 5-DAY

This course covers the different types of separation equipment typically encountered in oil and gas production facilities. Fractionation equipment and produced water treatment equipment are not covered in this course. You will learn where the different types of separation equipment are used based on operating conditions and separation performance requirements. Frequent references will be made to real production facility process flow diagrams (PFDs). Typical operational problems and their solutions will also be discussed. Exercises requiring calculations are utilized throughout the course as well.

You will be pleased to note that due to overlap in content, it is not necessary to take the FF-42 class if you have already taken the FF-41 Foundation Production and Processing Facilities course.

DESIGNED FOR
Process/Facilities engineers who need skills for design and troubleshooting of separators.

YOU WILL LEARN
- Different types of separation equipment utilized in the oil and gas industry and where they are used
- Separation performance capabilities of the different types of equipment
- How to size the different types of separation equipment
- How to troubleshoot and debottleneck separation equipment
- How to calculate the wall thickness and estimate the weight of separators
- Instrumentation and controls used on separation equipment

COURSE CONTENT
- Fluid properties and phase behavior • Phase separation processes • Gas-liquid separation equipment: slug catchers, conventional separators (horizontal and vertical), scrubbers, compact separators, filter separators/coalescing filters • Separator internals: inlet devices, mist extractors, baffles, weirs, etc. • Emulsions • Oil-water separation equipment: conventional 3-phase separators and freighter blowouts, wash tanks • Oil treatment and desalting equipment: mainly electrostatic coalescers • Liquid-liquid coalescing filters • Mechanical design aspects: pressure vessel codes, wall thickness and vessel weight estimation, material selection, relief requirements • Operational problems

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houston, US</td>
<td>24-28 Sep 2018</td>
<td>$4340</td>
</tr>
<tr>
<td>Houston, US</td>
<td>24-28 Jun 2019</td>
<td>$4425</td>
</tr>
<tr>
<td>Kuala Lumpur, Malaysia</td>
<td>12-16 Nov 2018</td>
<td>$5800</td>
</tr>
<tr>
<td>London, UK</td>
<td>18-22 Feb 2019</td>
<td>$5600</td>
</tr>
<tr>
<td>Kuala Lumpur, Malaysia</td>
<td>10-14 Sep 2019</td>
<td>$4900+VAT</td>
</tr>
<tr>
<td>Perth, Australia</td>
<td>23-27 Sep 2019</td>
<td>$5130+VAT</td>
</tr>
<tr>
<td>Houston, US</td>
<td>22-26 Jul 2019</td>
<td>$5780+GST</td>
</tr>
</tbody>
</table>

Relief and Flare Systems – PF44

Intermediate 5-DAY

This intensive course provides a comprehensive overview of relief and flare systems for oil and gas processing facilities. The course begins with the need for pressure control/overpressure protection, continues with the key engineering and design aspects including code considerations, and concludes with selecting and sizing the components of a relief and flare system. The material of the course is applicable to onshore field production facilities, pipelines, gas plants, terminals, refineries, and offshore production facilities. The use of dynamic simulations for relief load determination is discussed and demonstrated.

DESIGNED FOR
Engineers responsible for designing, operating, and maintaining relief and flare systems in oil and gas facilities.

YOU WILL LEARN
- Codes and Standards used in relief systems
- Ways to mitigate relief, such as HIPPS
- How to define the possible relief scenarios and calculate their relief loads
- Commonly used pressure relieving devices, and how to size them
- How to calculate relief valve inlet losses
- How to calculate relief valve stack height based on radiation limits
- How to size flare headers
- How to calculate flare stack height based on radiation limits
- Flare gas recovery systems
- Flare ignition systems available
- Advantages of using dynamic simulation for calculating relief loads

COURSE CONTENT
- Overview of typical relief and flare systems and key components • Codes and standards as well as good practices typical oil and gas facilities • Safety implications and causes of overpressure • Overpressure protection philosophy including source isolation and relief • Determination of relief requirements and defining setpoint pressures • Types, applications, and sizing of common relief devices • Blowdown/depressurizing - purpose and design/operational considerations • Design and specification considerations for relief valves and header systems, including fluid characteristics, services condition, material selection, and header sizing • Environmental considerations • Radiation calculations and the impact of flare tip design • Selection and sizing of key components: knockout and seal drums, vent/flare stack, vent/flare tips, and flare ignition systems • Defining need and quantity of purge gas • Flare gas recovery, smokeless flaring, and purge gas conservation • Operational and troubleshooting tips - use of dynamic simulations to determine relief loads

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houston, US</td>
<td>24-28 Sep 2018</td>
<td>$4340</td>
</tr>
<tr>
<td>Houston, US</td>
<td>24-28 Jun 2019</td>
<td>$4425</td>
</tr>
<tr>
<td>Kuala Lumpur, Malaysia</td>
<td>12-16 Nov 2018</td>
<td>$5800</td>
</tr>
<tr>
<td>London, UK</td>
<td>18-22 Feb 2019</td>
<td>$5600</td>
</tr>
<tr>
<td>Kuala Lumpur, Malaysia</td>
<td>10-14 Sep 2019</td>
<td>$4900+VAT</td>
</tr>
<tr>
<td>Perth, Australia</td>
<td>23-27 Sep 2019</td>
<td>$5130+VAT</td>
</tr>
<tr>
<td>Houston, US</td>
<td>26-30 Jul 2019</td>
<td>$5780+GST</td>
</tr>
</tbody>
</table>
Onshore Gas Gathering Systems: Design and Operations – PF45

INTERMEDIATE 5-DAY

This course deals with the design, operation, and optimization of onshore gas gathering systems and their associated field facilities, from the wellhead to the central gas processing facility. From a design perspective, the main variables that impact the flexibility and operational characteristics of an onshore gas gathering system will be discussed. Typical operating problems are covered including hydrates, multiphase flow issues, corrosion, declining well deliverability, etc. Exercises will be utilized throughout the course to emphasize the key learning points.

DEIGNED FOR
Production and facilities department engineers/ senior operating personnel responsible for the design, operation and optimization of onshore gas gathering systems and their associated field facilities.

YOU WILL LEARN
- The impact of produced fluids composition on gathering system design and operation
- How to evaluate field facility and gathering system configurations for different applications
- To recognize and develop solutions to operating problems with existing gas gathering systems

COURSE CONTENT
Gas well inflow performance and deliverability • Overview of gas well deliquification methods for low-rate, low pressure gas wells • Effect of gathering system/abandonment pressure on reservoir recovery • Impact of produced fluids composition • Sweet/sour • CO2 content • Rich/lean • Produced water • Hydrates and hydrate prevention • Dehydration • Heating • Chemical inhibition • Multiphase flow basics • Corrosion/materials selection • Gathering system layout • Wellsite/field facilities options • Provisions for future compression

CO2 Surface Facilities – PF81

SPECIALIZED 4-DAY

FIELD TRIP

This course emphasizes the effect of carbon dioxide on the selection and operation of equipment (separators, compressors, and dehydrators), as well as sweetening process equipment. This program, first introduced in 1985, assists those working with carbon dioxide or high carbon dioxide content natural gas. This course is particularly applicable to those persons who operate and/or design enhanced oil recovery (EOR) facilities using CO2 as a miscible agent. Physical and thermodynamic property data for carbon dioxide/natural gas mixtures are discussed. Calculations are performed to illustrate principles and techniques. Midland is a four-day session including a CO2 plant tour on Thursday, contingent on plant availability.

DEIGNED FOR
Engineers and senior operating personnel involved with carbon dioxide/natural gas/CO2 EOR systems.

YOU WILL LEARN
- What to expect over the life of a CO2 EOR system
- Impact of CO2 on the design and operation of oil production equipment
- Physical and thermodynamic properties of pure CO2, and the impact of CO2 in hydrocarbon mixtures
- Dehydrate high CO2-content gases
- Best practices to deal with Dense Phase pipelines, metering, flaring etc.
- How to pump and compress CO2
- Upstream purification processes: membranes, Ryan-Holmes, amines, hot carbonate, etc.

COURSE CONTENT
Overview of CO2 injection and process facilities • Heavy emphasis on CO2, for enhanced oil recovery • Physical and thermodynamic properties of CO2, and high CO2 mixtures • Materials selection and design consideration in CO2 systems • Process vessel specification • Pumps and compressors • Fluid flow and special pipeline design considerations such as the control of ductile fractures • Dehydration of CO2 and CO2-rich gases • General overview of processes to treat/recover CO2

Troubleshooting Oil and Gas Processing Facilities – PF49

INTERMEDIATE 5-DAY

This course will cover how to establish and apply a general troubleshooting methodology as well as how to conduct process/equipment specific troubleshooting. Definitions of good/normal performance will be discussed for each process/ equipment type covered. Data gathering, validation and utilization procedures will be discussed. Criteria to use when evaluating possible problem solutions will also be covered. Real-world exercises will be utilized throughout the class to reinforce the learning objectives. Both onshore and offshore facilities will be discussed. It is assumed that course participants have a solid understanding of how typical oil and gas production and processing facilities work, including the commonly used processes and equipment involved.

DEIGNED FOR
Process/Facilities engineers with 5–10 years of experience, facilities engineering team leaders/ supervisors, and senior facilities operational personnel.

YOU WILL LEARN
- The difference between troubleshooting, optimization, and debottlenecking
- How to recognize trouble when it is occurring
- How to develop a methodical approach to troubleshooting
- To recognize how different components of a facility interact with each other, and the significance of these interactions
- How to gather, validate, and utilize the data needed for troubleshooting
- The criteria to be considered for identifying the best solution when several feasible solutions are available
- Typical causes of problems, and their solutions, for the main types of processes and equipment used in the upstream midstream oil and gas industry

COURSE CONTENT
Troubleshooting methodology fundamentals and data reconciliation • Gas - Liquid separators • Reciprocating compressors • Amine gas sweetening • Glycol dehydration units • 3-phase separators • Centrifugal pumps • Oil treating • Produced water treating systems • Shell and tube heat exchangers • Centrifugal compressors • Molecular sieve dehydration units • NGL recovery processes

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAKERSFIELD, US</td>
<td>16-20 Sept 2019</td>
<td>$4370</td>
</tr>
<tr>
<td>CALGARY, CANADA</td>
<td>29 Apr - 3 May 2019</td>
<td>$4370+GST</td>
</tr>
<tr>
<td>DALLAS, US</td>
<td>22-26 July 2019</td>
<td>$4370</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>1-5 Apr 2019</td>
<td>$4425</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>15-19 Oct 2018</td>
<td>$5566</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>14-18 Oct 2019</td>
<td>$5566</td>
</tr>
<tr>
<td>BAKERSFIELD, US</td>
<td>19-23 June 2019</td>
<td>$5135+VAT</td>
</tr>
</tbody>
</table>

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDDLESBURG, US</td>
<td>12-15 Nov 2018</td>
<td>$4695</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>11-14 Nov 2018</td>
<td>$4198</td>
</tr>
</tbody>
</table>

Any course is available inhouse at your location. Contact us today.
INSTRUMENTATION, CONTROLS & ELECTRICAL

Instrumentation, Controls and Electrical Systems for Facilities Engineers – ICE21
FOUNDATION 5-DAY

This foundation-level course provides an introduction and overview of electrical systems, instrumentation, process control, and control/safety systems typically encountered in oil and gas facilities. The focus is to understand terminology, concepts, typical equipment configurations, and common pitfalls in order to improve communication with electrical and I&C professionals. This course covers similar content to our E3 and IC3 courses, but at a more conceptual level. This course is not a prerequisite for taking E3 or IC3, but rather a replacement for those that are not able to take both E3 and IC3.

DESIGNED FOR
- Process, chemical, and mechanical engineers, (i.e. non-instrumentation and non-electrical disciplines), as well as other technical and non-technical professionals with little or no background in I&C systems.
- Electrical and Instrumentation Engineers should consider E3 and IC3 for more in-depth coverage.

YOU WILL LEARN
- Fundamentals of electricity, such as voltage, current, resistance, power factor, and single/three-phase power systems.
- Electrical specifications, such as voltage selection, load lists, and power.
- How to read one-line diagrams and understand the function of the components of power distribution, including transformers, switchgear, MCCs, VFDs, and power distribution.
- The function and considerations of infrastructure components, such as cable, conduit, cable tray, and duct banks.
- Awareness of the concepts behind classification of hazardous locations and equipment specifications.
- Safety risks and mitigation strategies for power systems, including short circuit and overcurrent protection, ground faults, shock hazards, and arc flash.
- Fundamentals of control systems, sensors, controllers, and final elements.
- Key requirements for instrument specifications such as accuracy, signal selection, process conditions, material compatibility, installation considerations, capabilities and limits, and relative cost.
- Basics of specification of shutdown and control valves.
- Control system functions, limitations, and architectures, including PLC, DCS, SIS, RTU, and SCADA; common networking systems, including Ethernet, Modbus and Fieldbus.
- Exposure to the typical documentation and drawings necessary for the design specification, installation, operation and maintenance of electrical, instrumentation and control systems.

COURSE CONTENT
- Fundamentals of electricity, Control system fundamentals, Field measurement and control devices.
- Hazardous area classification for oil and gas applications.
- Programmable electronic systems (PLC, DCS, SIS, SCADA) and more.

2018-19 Schedule and Tuition (USD)
- **HOUSTON, US**
 - 24-28 SEP 2018: $4240
 - 3-7 DEC 2018: $4240
 - 3-7 JUNE 2019: $4325
 - 24-28 DEC 2019: $4325
- **KUALA LUMPUR, MYS**
 - 19-23 AUG 2019: $5035+VAT
- **LONDON, UK**
 - 1-5 APR 2019: $5035+VAT

Electrical Engineering Fundamentals for Facilities Engineers – E3
FOUNDATION 5-DAY

This course applies fundamental electrical engineering principles to oil and gas facilities. The course is designed for Facilities Engineers who interface with electrical systems, and provides practical insight and development of new Facilities Electrical Engineers. Through the use of individual and group problem solving, attendees will learn about field measurement devices, valves and actuation, documentation, programmable logic controllers, power supplies, PLC, DCS, SIS, hazardous areas, and installation methods. This course is a more in-depth version of the content of ICE-21 and ICE21 is not a prerequisite for taking this course.

DESIGNED FOR
- Those facilities personnel who interface with facility electrical power systems, including project engineers, operation leaders, instrumentation, controls personnel, and electrical engineers who are new to electrical power systems within oil and gas facilities.

YOU WILL LEARN
- Fundamental concepts of electricity including voltage, current, resistance, power, inductance, capacitance, and power factor.
- The key components of facilities electric power distribution, which include circuit arrangements, low and medium voltage switchgear, and single and three-phase and phase three schemes.
- Transformer operation, components, turns and voltage ratios, losses, efficiency, rating, and connections.
- The difference between direct current, induction and synchronous current motors, motor enclosures, and how to select, start, protect, and control motors.
- The principles of protecting electrical equipment, including time current curves, fuses, circuit breakers, and coordination.
- The purposes and sizing criteria for backup power, including generators and UPS power systems.
- The considerations and sizing criteria for on-site power generation, which includes standby, prime, peak, and co-generation.
- What grounding and bonding systems are, with an overview of ignition sources, shock protection, separately derived systems, and substation grounding.
- The concepts, terminology and application of hazardous area classification standards, equipment protection methods, and installation requirements for NEC and IEC projects.

COURSE CONTENT
- Fundamentals of insulation and conduction.
- Direct current, alternating current.
- Transformers power and motor.
- Motors induction and synchronous.
- Power distribution.
- System protection and coordination.
- Standby power systems.
- Power generation.
- Variable speed drive principles.
- Grounding, bonding, and electrical safety.
- Hazardous area identification.

2018-19 Schedule and Tuition (USD)
- **HOUSTON, US**
 - 11-15 FEB 2019: $4325
 - 22-26 OCT 2018: $4290
 - 21-25 OCT 2018: $4370

Instrumentation and Controls Fundamentals for Facilities Engineers – IC3
FOUNDATION 5-DAY

This course applies fundamental instrumentation and control engineering principles to oil and gas facilities design and operation, and is designed to accelerate the development of new Facilities Instrumentation and Control Engineers. Through the use of individual and group problem solving, attendees will learn about field measurement devices, valves and actuation, documentation, programmable logic controllers, power supplies, PLC, SCADA, DCS, SIS, hazardous areas, and installation methods. This course is a more in-depth version of the content of ICE-21 and ICE21 is not a prerequisite for taking this course.

DESIGNED FOR
- Facilities and Project Engineers as well as newly graduated Electrical, Controls and Instrument Engineers (0-5 yrs.) with a need to improve basic understanding of instrumentation and control systems within oil and gas facilities.

YOU WILL LEARN
- Operating principals and specification criteria for field measurement devices including level, pressure, temperature, and flow.
- Final elements and actuators including control loops, control valves, shutdown valves, actuators, and transducers.
- Process control basics with an emphasis on control loops, types, and configurations for common oil and gas process equipment such as separators, pumps, distillation towers, filters, contactors, compressors, heat exchangers, and fired heaters.
- Understanding of the PID algorithm, loop tuning, and advanced process control techniques such as feed forward, cascade, selective, and ratio control.
- Supervisory Control and Data Acquisition (SCADA) Systems to include telemetry, RTUs, internet, and web-based communications.
- Common networking systems including Ethernet, Modbus, and Fieldbus.
- Risk mitigation, technologies, and architecture of Safety Instrumented Systems (SIS).
- The concepts, terminology, and application of hazardous area classification standards, equipment protection methods, and installation requirements for NEC and IEC projects.

COURSE CONTENT
- Fundamentals of control signals and wiring.
- Control system basics.
- And more.

2018-19 Schedule and Tuition (USD)
- **DENVER, US**
 - 8-12 JUL 2019: $4320
 - 12-16 NOV 2018: $4240
 - 16-20 FEB 2019: $4325
 - 19-23 NOV 2018: $4325
 - 14-18 MAR 2019: $4325
 - 19-23 AUG 2019: $4890+VAT
- **LONDON, UK**
 - 18-22 AUG 2019: $5035+VAT

PLC and SCADA Technologies – 1C71
INTERMEDIATE 5-DAY

This workshop provides engineers and technicians with the basic theoretical and practical understanding of PLC and SCADA systems. It traces the evolution of the PLC as an intelligent “black box” replacement for the relay panel and how, with the advent of modern communications architectures, it may be combined with Supervisory Control and Data Acquisition (SCADA) systems to allow stand-alone control systems to be configured. Throughout the workshop, participants will learn through active participation using exercises, questionnaires, and practical PC-based simulation (LogixPro), covering: basic ladder logic programming; hardware diagnostics; and implementation of various communication strategies. Participants will also examine the basic requirements of a safety PLC and the various voting system architectures required to meet different Safety Integrity Levels (SILs).

DESIGNED FOR
- This workshop is specifically tailored for any personnel who are responsible for designing, selecting, specifying, installing, testing, operating, and maintaining programmable logic controllers (PLCs) and supervisory (SCADA) systems. This could include facilities, process, chemical, electrical, instrumentation, maintenance, and mechanical engineers and technicians.

YOU WILL LEARN HOW TO
- Describe the fundamental principles of the PLC.
- Identify the basic components.
- Write a ladder logic program.
- Explain the basics of advanced programming according to IEC 61131-3.
- Compare different methods of analog processing.
- Apply common-sense installation practices.
- Examine the different components of a SCADA system.
- Describe the basic principles of serial communications.
- Evaluate the requirements for PLC-to-SCADA communications.
- Distinguish the specific requirements of the PLC in safety-related applications.

COURSE CONTENT
- Introduction to control systems.
- SCADA versus DCS.
- PLC environmental enclosures.
- Processing and scanning.
- Digital processing.
- Analog processing.
- Installation practices.
- Interference or noise reduction.
- Cable spacing and routing.
- Earthing and grounding.
- Binary and hexadecimal numbering systems.
- The IEC 61131-3 standard.
- Ladder logic diagrams.
- Functional block diagrams.
- Derived function blocks.
- Structured text.
- Instruction lists.
- Sequential function charts.
- SCADA basics.
- SCADA set-up and simulation.
- System architecture.
- Communication strategies.
- Asynchronous transmission.
- Coding.
- The RS-232 standard.
- The RS-485 standard.
- Modbus.
- Safety PLCs.
- Voting system architectures.
Valve and Actuator Technologies – IC72

INTERMEDIATE 5-DAY
This workshop provides a total in-depth insight into valve and actuator technology, covering:
• control valves, check valves, shut-off valves, solenoid valves, and pressure relief valves.
A methodology is presented to ensure the optimum selection of size, choice of body and trim materials, components, and ancillaries. Whilst studying both liquid and gas valve sizing, delegates will also learn the correct procedures for calculating the spring “wind-up” or “bunch set”. Maintenance issues also include: testing for dead-band/hysteresis, stick-slip, and non-linearity; on-line diagnostics; and signature analysis. Throughout the workshop, participants will learn through active participation using exercises, questionnaires, and practical sessions covering: systems choice; basic sizing calculations; computer-based sizing; and maintenance diagnostics.

DESIGNED FOR
Facilities, chemical, electrical, instrumentation, maintenance, and mechanical engineers and technicians involved in designing, selecting, sizing, specifying, installing, testing, operating and maintaining shut-off, pressure relief, and control valves.

YOU WILL LEARN HOW TO
• Compare the major technologies used in the final control element
• Calculate the valve flow coefficient Cv
• Perform flow and system pressure head loss calculations
• Contrast the different types of control, shut-off, and check valves
• Describe the principles of cavitation control and noise reduction
• Select optimum materials of construction to avoid corrosion and erosion
• Identify the correct requirements for trim selection
• Differentiate between inherent and installed characteristics
• Identify ANSI/DN pipe sizes and pressure ratings
• Explain the control valve seat leakage classifications
• Evaluate the optimum valve-actuator combination
• Apply on-line valve testing and diagnostics for deadband and hysteresis, stick-slip, and non-linearity
• Examine the principles of preventive maintenance through the application of signature analysis
• Perform a bench set and calculate actuator spring wind-up
• Pick the correct positioner using our set of guidelines

COURSE CONTENT
Choked flow • Pressure recovery • Flashing and cavitation • Seat leakage • Sizing for liquids and gases • Valve construction • Cavitation control and noise reduction • Valve types • Valve trim and characterization • Valve selection • Actuators and positioners • Valve testing and diagnostics • Maintenance and repair

Flow and Level Custody Measurement – IC73

INTERMEDIATE 5-DAY
This course is designed to acquaint users with the problems and solutions for high accuracy transfer of liquid and gas petroleum products from supplier to customer. These needs have been brought about by major changes in manufacturing processes and because of several dramatic circumstantial changes such as: the increase in the cost of fuel and raw materials; the need to minimize pollution; and the increasing pressures being brought to bear to adhere to the requirements for health and safety.

DESIGNED FOR
This workshop is specifically tailored for any personnel who are, or will be, responsible for designing, selecting, sizing, specifying, installing, testing, operating, and maintaining transfer measurement. This could include facilities, process, chemical, electrical, instrumentation, maintenance, and mechanical engineers and technicians.

YOU WILL LEARN HOW TO
• Recall the basics of fluid mechanics
• Identify the fundamental problems related to uncertainty
• Compare the different methods of measuring flow in oil and gas industries
• Describe the various methods of level measurement
• Compare the different methods used to derive striping tables
• Evaluate the different custody transfer standards in use today
• Contrast the methods used in flow calibration
• Identify the different types of proving systems
• Explain the methodology used in truck custody transfer
• Examine the challenges regarding pipelines
• Describe the basics of leak detection
• Analyze the methodology for monitoring and controlling production losses
• Evaluate and compare the problems and solutions associated with the measurement of NGL, LPG, and LNG

COURSE CONTENT
Fluid mechanics • Flowmeter classification • Uncertainty analysis • Flow measurement • Turbine • Positive displacement • Ultrasonic flowmeters • Coriolis mass flowmeters • Level measurement • Buoyancy tape systems • Hydrostatic pressure • Ultrasonic measurement • Radar measurement • Flow calibration • Terminal custody transfer • Tank management systems • Leak automatic custody transfer • Truck custody transfer • Pipeline considerations • Fugitive emissions • Leak detection • Real time transient model • Loss control systems • Custody transfer sampling • Monitoring and controlling production losses • Physical leaks • Meter proven performance • API standards • Measuring the suspended S&W content • Calculating net volume • Flowmeter selection and costs • Initial considerations • Meter selection • Properties and measurement of NGL, LPG, and LNG

Practical PID Control and Loop Tuning – IC74

INTERMEDIATE 5-DAY
This workshop provides instrumentation, automation, and process engineers and technicians with the basic theoretical and practical understanding of regulatory control systems and how this can be applied to optimize process control in terms of quality, safety, flexibility, and costs. Centered on the ISA-recommended PC-Control LAB simulator, participants will learn through active participation using exercises, questionnaires, and a series of 16 practical simulation sessions covering: process reaction; tuning methods; diagnostic tools; effect of different algorithms; surge tank level control; analysis of such problems as valve hysteresis, stick and non-linearities and the impact on controllability; and integral windup.

DESIGNED FOR
This workshop is intended for personnel involved in specifying, installing, testing, tuning, operating, and maintaining regulatory PID control systems.

YOU WILL LEARN HOW TO
• Describe such terms as process lag, capacitance, and resistance
• Explain the significance of the process reaction curve
• Identify the effects of filtering on loop performance
• Distinguish the effect of span on the system performance
• Analyze such problems as valve hysteresis, stick, and non-linearities
• Evaluate the effects of proportional, integral, and derivative control
• Correctly apply both open and closed loop Tuning according to Ziegler-Nichols
• Apply “as found” tuning
• Estimate the effects on loop tuning using a software-based loop analysis program
• Describe both cascade and feedforward control
• Explain split range control
• Identify and correct problems due to process dead time
• Discuss the top 20 mistakes made in the field of process control

COURSE CONTENT
Basic process considerations • Process lag, capacitance, and resistance • Process reaction curve • 1st and 2nd order reactions • Instrumentation calibration • Filtering • Aliasing • Reaction masking • Sensor placement • Correct PV • Effect of span • Inherent and installed valve characteristics • Actuators • Valve positioners • Testing procedures and analysis • ON/OFF control • Proportional control • Proportional offset • Reset • Integral action and windup • Stability • Derivative action • PID control • Control algorithms • Load disturbances and offset • Speed, stability, and robustness • Open loop reaction curve tuning method (Ziegler-Nichols) • Default and typical settings • Closed loop continuous cycling tuning method (Ziegler-Nichols) • Fine tuning • As found tuning • Surge transitions • Split-parallel range control • Cascade systems • Feed-forward and combined systems • Ratio control • System integration

2018-2019 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition 1</th>
<th>Tuition 2</th>
</tr>
</thead>
</table>

*plus computer charge

PETROSKILLS CONFERENCE CENTER

Located in the Houston area, we are available to host your next meeting, in addition to the many PetroSkills training sessions we hold here each year.

CONFERENCE CENTER AMENITIES:
• 10 classrooms
• 2 rooms with virtual accessibility
• Concierge and support staff
• State-of-the-art audio-visual
• High-speed wireless internet
• On-site technical support
• Break area and courtyard
• Complimentary parking

25403 KATY MILLS PARKWAY
KATY, TEXAS 77494
+1.832.426.1200
petroskills.com/pcc

Any course is available inhouse at your location. Contact us today.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
Corrosion Management in Production/Processing Operations – PF22

This course will cover the main causes of corrosion in upstream oil and gas operations, as well as monitoring and mitigation methods. The various corrosion mechanisms give rise to a number of different forms of corrosion damage, which will all be considered. Participants will estimate the corrosivity of a given environment through analysis of the chemical and physical characteristics of the system; review approaches to selecting materials and coatings for corrosion resistance for different conditions and applications (including the use of NACE MR0175/ISO 15156); and be introduced to cathodic protection (CP) surveys, selecting the CP-system type, estimating current requirements, and the design principles of simple cathodic protection systems. The participant will learn how to select and utilize corrosion inhibitors for different systems, and how to select and apply corrosion monitoring techniques to create an integrated monitoring program. The course content is based on a field facilities engineering point of view, as opposed to a more narrowly-specialized corrosion engineering or chemistry viewpoint. It provides an appropriate balance of necessary theory and practical applications to solve/mitigate corrosion-related problems.

DESIGNED FOR
Managers, engineers, chemists, and operators who need to understand corrosion and its control management in oil and gas production and processing.

YOU WILL LEARN
- The basics of corrosion chemistry
- The main corrosion mechanisms occurring in oil and gas production/processing systems
- The different types of damage caused by corrosion
- Materials selection for corrosion prevention
- Some methods for conducting cathodic protection (CP) surveys
- Items to consider in corrosion inhibitor selection
- Key advantages and disadvantages of the various corrosion monitoring methods
- Where the main locations of corrosion concern occur within oil production systems, gas processing facilities (including amine units), and water injection systems

COURSE CONTENT
Fundamentals of corrosion theory • Major causes of corrosion (O2, CO2, H2S, microbiologically influenced corrosion) • Forms of corrosion damage • Materials selection • Protective coatings and linings • Cathodic protection • Corrosion inhibitors • Corrosion monitoring and inspection • Corrosion in gas processing facilities • Corrosion in water injection systems • Corrosion management strategy and life-cycle costs

<table>
<thead>
<tr>
<th>2018-19 Schedule and Tuition ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO CHI MINH CITY, VNM</td>
</tr>
<tr>
<td>14-18 OCT 2019</td>
</tr>
<tr>
<td>HANOI</td>
</tr>
<tr>
<td>6-10 MAY 2019</td>
</tr>
<tr>
<td>(USD)</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
</tr>
<tr>
<td>29 DEC-2 NOV 2018</td>
</tr>
<tr>
<td>LONDON, UK</td>
</tr>
<tr>
<td>6-12 APR 2019</td>
</tr>
<tr>
<td>MIDLAND, US</td>
</tr>
<tr>
<td>29 JUL-2 AUG 2019</td>
</tr>
<tr>
<td>NEW YORK, USA</td>
</tr>
<tr>
<td>3-7 DEC 2018</td>
</tr>
<tr>
<td>THE HAGUE, NLD</td>
</tr>
<tr>
<td>2-6 DEC 2019</td>
</tr>
<tr>
<td>BRAZIL – SAO PAULO</td>
</tr>
<tr>
<td>5-9 DEC 2018</td>
</tr>
</tbody>
</table>

Piping Systems - Mechanical Design and Specification – ME41

INTERMEDIATE 5-DAY

This 5-day, intermediate level course for engineers and piping system designers reviews the key areas associated with the design of piping systems for oil and gas facilities. The course is focused on four areas: codes and standards, pipe materials and manufacture, piping components, and piping layout and design. Applicable piping codes for oil and gas facilities (ISO, BS13, BS14, BS316, etc.), pipe sizing calculations, pipe installation, and materials selection are an integral part of the course. The emphasis is on proper material selection and specification of piping systems.

DESIGNED FOR
This PetroSkills training course is ideal for mechanical, facilities, plant, or pipeline engineers and piping system designers who are involved in the design of in-plant piping systems for oil and gas facilities.

YOU WILL LEARN
- To apply piping system codes and standards
- About line sizing and layout of piping systems in various types of facilities
- How to specify proper components for process and utility applications
- To compare alternative materials of construction
- The process of steelmaking, pipe manufacturing, and material specifications
- Joining methods and inspection techniques
- Key considerations for flare and vent systems, including PSV sizing

COURSE CONTENT
Piping codes and standards (ANSI/ASME, API, ISO) • Pipe materials and manufacturing • Basic pipe stress analysis methods • Valves and actuators • Welding and non-destructive testing • Line sizing basics (single-phase and multiphase flow) • Pipe and valve material selection • Piping layout and design • Manifolds, headers, and flare/vent systems • Non-metallic piping systems • Operations and maintenance considerations of facilities and pipelines

Mechanical Specification of Pressure Vessels and Heat Exchangers – ME43

INTERMEDIATE 5-DAY

This 5-day, intermediate level course for facility engineers and project engineers reviews the key areas associated with the mechanical design of pressure vessels and heat exchangers for oil and gas facilities. The course is focused on vessels, heat exchangers built in accordance to ASME VIII Div 1, considering material selection, key design calculations, and manufacturing processes. The course is not aimed at process engineers sizing equipment (PF – covers these elements), although a brief review of the sizing correlations is included. The course is delivered from the perspective of a vessel fabricator to better understand the dos and don’ts of ideal mechanical specification of pressurized equipment by own method in order to optimize material utilization and minimize construction costs. The Houston session features an afternoon field trip to a large pressure vessel fabricator.

DESIGNED FOR
Mechanical, facilities, construction, or project engineers and plant piping/vessel designers who are involved in the specification and purchasing of pressure vessels, heat exchangers, and other pressure-containing equipment for oil and gas facilities.

YOU WILL LEARN
- About ASME B&PV code and the commonly used sections relevant to oil and gas equipment
- To specify correctly and commonly used materials according to ASME B
- How to design vessel shells, heads, nozzles, and heat exchanger details
- How to provide accurate equipment specification documents and review documentation for code compliance
- Key fabrication processes used in the workshop and how to simplify construction through correct vessel specification
- About welding processes and inspection requirements per ASME IX

COURSE CONTENT
Vessel codes and standards (ASME B&PV Code, TEMA, API) • Pipe material selection, corrosion mechanisms, heat treatment, and basic metallurgy • Essential design calculations for vessels and heat exchangers • Welding process overview and inspection requirements • Constructability and operability considerations • Vessel integrity, evaluation, and re-purposing of pressure-containing equipment according to API/ASME

2018-19 Schedule and Tuition ($)

<table>
<thead>
<tr>
<th>2018-19 Schedule and Tuition ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO CHI MINH CITY, VNM</td>
</tr>
<tr>
<td>14-18 OCT 2019</td>
</tr>
<tr>
<td>BRAZIL – SAO PAULO</td>
</tr>
<tr>
<td>5-9 DEC 2018</td>
</tr>
</tbody>
</table>

FOR MORE INFORMATION, VISIT PETROSKILLS.COM/RSM

See website for dates and locations.

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>2018-19 Schedule and Tuition ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAZIL – SAO PAULO</td>
</tr>
<tr>
<td>5-9 DEC 2018</td>
</tr>
<tr>
<td>4515</td>
</tr>
<tr>
<td>23-27 SEP 2019</td>
</tr>
<tr>
<td>4600</td>
</tr>
</tbody>
</table>

† includes field trip
Fundamentals of Pump and Compressor Systems – ME44

INTERMEDIATE 5-DAY
This is an intensive 5-day course providing a comprehensive overview of pumps and compressor systems. The focus is on equipment selection; type, unit, and station configuration; and integration of these units in the process scheme and control strategy in upstream and midstream oil and gas facilities. The material of the course is applicable to field production facilities, pipelines, gas plants, and offshore systems.

YOU WILL LEARN
• Selecting the appropriate integrated pump and compressor units (drivers, pumps, compressors, and auxiliary systems)
• Integrating the pump or compressor units with the upstream and downstream piping and process equipment
• Evaluating pump and compressor units and their drivers in multiple train configurations, parallel and series
• Identifying the key local and remote control elements of pumps and compressors as well as their drivers
• Defining the major life-cycle events, such as changes in flows, fluid composition, and operating conditions that can affect equipment selection and operating strategies
• Assessing the key pump hydraulics and compressor thermodynamics, and their effect on selection and operations
• Identifying significant operating and control applications and selection and troubleshooting techniques

COURSE CONTENT
Types of pumps, compressors, and drivers, and their common applications and range of operations • Evaluation and selection of pumps and compressors, and their drivers for long-term efficient operations • Unit and station configuration including multiple trains in series and/or parallel operations • Integration with upstream and downstream process equipment; local and remote control systems, and facilities utilities • Key auxiliary systems including monitoring equipment, heat exchangers, lube and seal systems, and fuel/power systems • Major design, installation, operating, troubleshooting, and maintenance considerations

Compressor Systems - Mechanical Design and Specification – ME46

SPECIALIZED 5-DAY
This 5-day, specialized level course is for facility design engineers, operations engineers, and technicians seeking an in-depth understanding of centrifugal, reciprocating, and screw compressors. This course provides basic knowledge of compressor types and associated auxiliary systems, mechanical design of equipment, operating and performance characteristics, control and monitoring systems, maintenance practices, and codes and standards.

YOU WILL LEARN
• How to apply thermodynamics to compressor performance and operating characteristics
• How to size, specify, and select compressors
• Compressor auxiliary systems
• Series and parallel application of compressors
• How to integrate compressor systems into process facilities used in the oil and gas industry
• How to use state-of-the-art monitor and control devices in the operation, maintenance, and troubleshooting of compression systems
• How to apply maintenance practices to improve compressor reliability
• Shop and field performance testing
• Compressor economics including OPEX vs. CAPEX considerations

COURSE CONTENT
Types and application of compressors • Selection criteria of dynamic and positive displacement compressors • Compressor thermodynamics and operating characteristics • Performance curves and off-design evaluations • Key compressor components and other auxiliary systems • Equipment specifications • Compressor controls and monitoring devices • Driver and gear involvement • Installation, operation, maintenance practices, and troubleshooting • Economic considerations

Process Plant Reliability and Maintenance Strategies – REL5

INTERMEDIATE 5-DAY
This course is designed to teach reliability engineering skills as they apply to improving process systems reliability and developing maintenance strategies. You will use modern software and analysis methods to perform statistical analysis of failures and model system performance, plus develop maintenance and reengineering strategies to improve overall performance.

YOU WILL LEARN
• Improving reliability in new facilities/systems
• Reliability design for maintainability
• Developing initial maintenance strategies
• Developing maintenance strategies with RCM
• Developing maintenance strategies with reliability-centered maintenance (RCM)
• Improving reliability in existing facilities/systems
• Analyzing process reliability plots to determine the amount of opportunity
• Continuous improvement through failure reporting, analysis, and corrective action systems (FRACAS)
• Developing policies and procedures; developing failure reporting codes; statistical analysis of failures using Weibull; and developing root cause analysis (RCA) programs (triggers for RCA and analyzing recommendations)
• Developing maintenance strategies with condition monitoring
• Identifying applicable condition monitoring methods; using criticality to determine level of condition monitoring application; and reporting asset health
• Developing maintenance strategies with RCM
• Developing policies and procedures; identifying systems for analysis; analyzing recommendations with simulation and modeling; and implementing recommendations
• Monitoring results
• Understanding the true purpose of key performance indicators (KPIs)
• Developing appropriate reliability and maintainability KPIs

COURSE CONTENT
Criticality analysis • Availability simulation and modeling • Statistical analysis of failures using Weibull • Maintenance strategy development; condition monitoring; reliability-centered maintenance; and essential care • Process reliability analysis • Root cause analysis • Failure reporting; analysis, and corrective action systems • Key performance indicators • Reliability definitions

2018-19 Schedule and Tuition (USD)

BLACKPOOL, UK
26-30 NOV 2018 $4990+VAT
17-21 JUNE 2019 $4220
11-15 NOV 2018 $5440+VAT
3-7 NOV 2019 $5545+VAT
2-6 JUNE 2019 $4160
22-26 JUL 2019 $4600
3-7 DEC 2018 $4290
26-30 AUG 2019 $4370

2018-19 Schedule and Tuition (USD)

HOUSTON, US
10-14 SEP 2018 $4440
9-13 SEP 2019 $4525

2018-19 Schedule and Tuition (USD)

BLACKPOOL, UK
10-14 SEP 2018 $4990+VAT
29 APR-3 MAY 2019 $4425

You Will Receive:
• Complimentary learning and development resources
• Information on new courses and instructors
• Additional public course locations and dates
• Invitations for PetroSkills events and conferences

Simply go to petroskills.com/emailsngup

Technical Resources Available to You

Keep current and ensure you always have the latest information by joining our email list.
Onshore Pipeline Facilities - Design, Construction and Operations – PL42

FOUNDATION 5-DAY

Successful onshore pipeline businesses require personnel competent in fully integrated approaches to evaluation, planning, design, construction, operations, and asset integrity management. This intensive, 5-day foundation level course explores best practices for developing and maintaining pipeline systems that maximize life cycle reliability: employee, public, and environmental safety; and cost effectiveness. Design and team exercises are an integral part of this course.

DESIGNED FOR

Pipeline project managers and engineers, operations and maintenance supervisors, regulatory compliance personnel, and other technical professionals with 1-3 years of experience in natural gas, crude oil, refined petroleum products, LPGs, NGL, chemical, carbon dioxide pipeline engineering, construction, operations, or maintenance. This course is intended for participants needing a broad understanding of the planning, development, construction, start-up, and operating and asset integrity management of onshore pipelines.

YOU WILL LEARN HOW TO

- Apply regulatory codes, standards, and industry guidelines (API and others) that control and guide the permitting, design, construction, operation, and maintenance of pipelines facilities
- Apply mechanical and physical principles to pipeline design, hydraulics, and material selection
- Describe the important factors in station design
- Describe the importance of route selection and hydraulics for long-term profitability, reliability, and safety
- Identify special design and construction challenges of onshore pipeline systems
- Describe methods of river and road crossings, HDD crossings, bores
- Identify the principle interfaces and potential interdependencies of pipeline facilities, such as pump stations and terminals, on design and operations
- Apply operational and maintenance tools and procedures, including system monitoring and control, leak detection, corrosion control, custody measurement and quality control, asset integrity management, and emergency response planning

COURSE CONTENT

Regulations and code compliance requirements
- Pipeline survey and routing
- Mechanical and hydraulic design
- Proper system sizing and design
- Equipment selection criteria
- Facilities sites and design concerns
- Construction methods and contracting approaches
- Operations and asset integrity management

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Schedule</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dubai, UAE</td>
<td>7-11 Oct 2018</td>
<td>$5340+VAT</td>
</tr>
<tr>
<td></td>
<td>15-19 Sept 2019</td>
<td>$5445+VAT</td>
</tr>
<tr>
<td></td>
<td>6-10 May 2019</td>
<td>$4325</td>
</tr>
<tr>
<td>Houston, US</td>
<td>14-18 Oct 2019</td>
<td>$4560</td>
</tr>
<tr>
<td>Kuala Lumpur, MYS</td>
<td>22-26 Oct 2018</td>
<td>$4560</td>
</tr>
<tr>
<td></td>
<td>25-29 Nov 2019</td>
<td>$4560</td>
</tr>
</tbody>
</table>

Offshore Pipeline Design and Construction – PL43

FOUNDATION 5-DAY

This intensive five-day foundation level course covers the principal aspects of design, construction, and operations of offshore pipeline systems. The course focuses on pipeline mechanical, strength, and stability design, and construction. Special challenges, such as shoreline crossings, foreign pipeline crossings, repair methods, flow assurance, corrosion control and cathodic protection are an integral part of this course. Participants will acquire the essential knowledge and skills to design, construct, and operate pipelines. Design problems and team projects are part of this course.

DESIGNED FOR

Engineers, designers and operators who are actively involved in the design, specification, construction, and operation of offshore pipeline systems.

YOU WILL LEARN HOW TO

- Apply mechanical, strength, and physical principles to pipeline design, material selection, and operation
- Describe the key construction methods
- Define the importance of environmental conditions, construction methods, and pipeline system hydraulics in design, installation, and operations of offshore pipeline systems
- Identify special design and construction challenges of offshore pipeline systems
- Incorporate construction methods into the design of a pipeline system
- Identify the principal interfaces of pipeline facilities, such as platforms, floating production systems, sub-sea wellheads, and SPMTs on design, construction, and operations of offshore pipeline systems
- Identify offshore safety and environmental practices and their effect on design, construction, and operations

COURSE CONTENT

Overview of oil and gas transportation systems
- Review pipeline hydraulics, focusing on those aspects that affect design, construction, and operations
- Pipeline systems definition, survey, and route selection
- Safety, environmental, and regulatory considerations, focusing on Codes and Standards related to pipelines
- Pipeline conceptual and mechanical design for strength, stability, and constructibility
- Pipeline materials and components selection including line pipe, corrosion and cathodic protection, and coatings
- Specialized equipment and materials for integrating with subsea wellhead/manifold systems, side taps, insulation, and pipe-in-pipe

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Schedule</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houston, US</td>
<td>14-18 Oct 2018</td>
<td>$5340+VAT</td>
</tr>
<tr>
<td>Kuala Lumpur, MYS</td>
<td>22-26 Oct 2018</td>
<td>$5445+VAT</td>
</tr>
<tr>
<td></td>
<td>25-29 Nov 2019</td>
<td>$4325</td>
</tr>
</tbody>
</table>

Terminals and Storage Facilities – PL44

FOUNDATION 5-DAY

This 5-day, foundation level course reviews key issues associated with development, design, construction, and operation of terminals and storage facilities for liquid hydrocarbons and NGLs. The course covers six areas: 1) terminal codes and siting constraints, 2) terminal design and equipment layout, 3) types of storage and selection criteria, 4) design considerations for loading racks, fire protection, vapor recovery, blending equipment, and water treatment, 5) detailed design of storage tanks, vessels, and caverns, and 6) operations and maintenance. Safety, quality, control, system reliability, availability, and regulatory compliance are integrated throughout the course. Case studies and team exercises are used to reinforce key points.

DESIGNED FOR

Project managers, engineers, operations and maintenance supervisors, and regulatory compliance personnel with 1-3 years of experience in planning, engineering, constructing and/or operating terminals and storage facilities for hydrocarbon liquids, NGLs, and petrochemical feedstocks. This course is for participants needing a foundation level understanding of the planning, engineering, construction, operation, and maintenance of storage and terminals connected to pipelines, rail, barges/tankers and/or truck loading facilities.

YOU WILL LEARN

- Storage and terminals basics for hydrocarbon liquids, NGLs, and petrochemical feedstocks
- Design and operation of atmospheric storage tanks and pressurized butted and spheres
- Fundamentals of underground storage (salt and rock caverns)
- Safety, product quality, and reliability/availability concerns

COURSE CONTENT

- Sizing criteria and economics for storage and terminal facilities
- Various storage types (atmospheric storage tanks, pressure vessels, salt rock caverns) and appropriate applications
- Terminal and tank farm layout constraints
- Details of industry codes and standards, plus regulatory and environmental compliance
- Selection of equipment for delivery and receipt to/from pipelines, barges and ships, trucks, and rail, including metering options, loading arms, pumps, and control systems
- Blending options and equipment, VRU/VCU, water treating, and fire protection
- Key factors affecting safety, product quality, system reliability, and profitability in design, construction, and operations
- Atmospheric storage tank design, layout, construction, corrosion prevention, and operations covering API 650 and API 653
- Overview of pressure vessel and sphere design and construction
- Design, development, and operation of underground cavern storage facilities

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Schedule</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dubai, UAE</td>
<td>14-18 Oct 2018</td>
<td>$5340+VAT</td>
</tr>
<tr>
<td></td>
<td>22-26 Sept 2019</td>
<td>$5445+VAT</td>
</tr>
<tr>
<td>Houston, US</td>
<td>26-30 Aug 2019</td>
<td>$4325</td>
</tr>
</tbody>
</table>
Overview of Offshore Systems – OS21

BASIC 5-DAY

This five-day course will accelerate the learning and productivity of individuals with little to no experience working in the offshore oil and gas industry. The course provides an overview of field development concepts and explains how offshore structures and facilities function as integrated systems. The content includes the full range of water depths from shallow to ultra-deepwater. All major components required for offshore developments such as fixed and floating platforms, drilling and workover rigs, pipelines, risers, process and utilities and construction equipment are discussed. The importance of life-cycle considerations during development planning is emphasized. Individual and group exercises, including a case study, are used throughout the course. The course instructors are experienced offshore managers.

DESIGNED FOR
Technical staff, business professionals, technicians, analysts and other non-technical staff who are involved but have limited experience, or will be involved, with offshore oil and gas facilities. The course provides a basic understanding of offshore systems in all water depths, from shallow to ultra-deepwater, including design, construction, and operations.

YOU WILL LEARN HOW TO
- Identify the key steps in the development of offshore fields from discovery through decommissioning
- Understand the elements of field architecture to define a workable field development
- Recognize key stakeholder issues
- Recognize offshore production facilities and structures, fixed and floating.
- Understand the impact of the ocean environment on facilities design and operations
- Identify major design, construction, and operational issues and interfaces of offshore systems
- Recognize important forces on offshore structures and their influence on design and cost
- Understand strategic options for well drilling (construction) and servicing
- Appreciate the basic processes and equipment involved in the topsides design and operation
- Understand fluid transportation options and equipment
- Recognize the marine equipment used in the construction of offshore facilities
- Understand basic issues in life-cycle and decommissioning decisions
- Appreciate advances in offshore technology

COURSE CONTENT
Field development concepts, fixed and floating systems • Wells, construction and servicing • Topsides facilities; processing • Utilities • Oil and gas transportation systems design and installation • Production operations • Offshore construction; equipment • Fabrication; transportation; integration; installation project management • Life-cycle considerations, including decommissioning

Overview of Subsea Systems – SS2

BASIC 5-DAY

An overview of subsea components and how they are integrated into field architecture is provided throughout this five-day course. Individuals will develop a basic understanding of the various subsea components used in all water depths, from relatively shallow to ultra-deepwater. The participants will all learn how the components are integrated into subsea field developments, which will accelerate learning and productivity. Installation and flow assurance are emphasized as key drivers in subsea design. The course emphasizes a systems approach to design. Individual and group exercises are used throughout the course, including a case study to develop field architecture recommendations, basic component selection, and high level project execution plans for a subsea development. Course instructors are experienced offshore managers.

DESIGNED FOR
Technical staff who are beginning or transitioning into the design, construction, and operation of subsea systems. Non-technical staff working with a subsea development team will benefit by developing an awareness of subsea systems.

YOU WILL LEARN HOW TO
- Recognize the integrated nature of field architecture, system design, and component selection
- Identify appropriate applications for subsea systems
- Identify the main subsea components, their functions, strengths, weaknesses, and interfaces from the well to the production facility
- Understand key design, construction, and installation issues
- Describe basic operating and maintenance considerations
- Understand the key steps, from drilling through startup, for the design, fabrication, testing, installation, and operation
- Understand the importance of an integrated approach to design, flow assurance, installation, and life-cycle considerations

COURSE CONTENT
Applications for subsea systems • Flow assurance considerations in system design and configuration • Field architecture considerations • Subsea component descriptions and functions • Fabrication, testing, installation, commissioning, and operational issues • Production, maintenance, and repair considerations

Fundamentals of Offshore Systems Design and Construction – OS4

FOUNDATION 10-DAY

This 10-day course provides a fundamental understanding of the technology and work processes used for the design and construction of all types of offshore systems, including consideration of asset development, surveillance, and management. The content includes the full range of water depths from shallow water to ultra-deepwater and will also address life-cycle considerations in all phases of offshore field development and operation. All major components required for offshore developments, such as fixed and floating platforms, drilling rigs, workover equipment, pipelines, risers, process, and utilities and construction equipment are discussed. Emphasis is placed on the multi-discipline team approach needed to manage the myriad interfaces of offshore facility design, construction, and operations. Individual and group exercises are used throughout the course. A case study for an offshore project development is included.

DESIGNED FOR
Individuals with a basic awareness of or experience in offshore engineering and operations. Technical staff, project engineers, engineering discipline leads, engineering specialists, and operating staff find this course accelerates their capability to contribute to an offshore field development planning, design, and construction projects and field operations.

YOU WILL LEARN HOW TO
- Identify the key facilities parameters that must be evaluated for field development
- Recognize the best applications and characteristics of each type of offshore fixed and floating structure
- Account for the effects of the ocean environment on facilities design, construction, and operations
- Identify the impact space, loads and forces have on the structural design and global performance of offshore structures and how they influence their cost
- Describe the impact of topside facilities (well construction, well servicing, processing, and utilities) on the design of the supporting structure and outline the topsides design process
- Recognize and manage key design and operational interfaces between the major components of offshore facilities systems
- Understand the key design, construction, and installation issues associated with fixed and floating platforms and how to apply the lessons learned to your work

COURSE CONTENT
Offshore systems overview and field architecture selection • Well construction and servicing equipment and operation • Flow assurance • Topsides facilities • Oil and gas transportation facilities • Riser systems • Subsea systems • Production and utility systems • Infrastructure impact on design and operation • Effects of the ocean environment • Introduction to naval architecture • Structural design processes and tools • Construction plans and execution • and more...

Flow Assurance for Offshore Production – FAOP

INTERMEDIATE 5-DAY

Flow assurance is a critical component in the design and operation of offshore production facilities. This is particularly true as the industry goes to deeper water, longer tiebacks, deeper wells, and higher temperature and pressure reservoirs. Although gas hydrate issues dominate the thermodynamic design, waxes, asphaltene, emulsions, scale, corrosion, erosion, solids transport, slugging, and operability are all important issues which require considerable effort. The participant will be presented with sufficient theory/correlation information to be able to understand the basis for the applications. This intensive five-day course has considerable time devoted to application and design exercises to ensure the practical applications are learned.

DESIGNED FOR
Engineers, operators, and technical managers who are responsible for offshore completions, production, and development; technical staff needing a foundation in principles, challenges, and solutions for offshore flow assurance. The course is also appropriate for persons involved in produced fluids flow in onshore production operations.

YOU WILL LEARN HOW TO
- Identify the components of a complete flow assurance study and understand how they relate to the production system design and operation
- Interpret and use sampling and laboratory testing results of reservoir fluids relative to flow assurance
- Understand the basic properties of reservoir fluids and how they are modeled for the production flow system
- Understand the thermodynamic modeling of steady state and transient multiphase flow in offshore production systems
- Evaluate and compare mitigation and remediation techniques for gas hydrates, paraffin (waxes), asphaltene, emulsions, scale, corrosion, erosion and solids transport, and slugging
- Understand the elements of an operability report for subsea production facilities, flowlines, and export flowlines

COURSE CONTENT
Overview of flow assurance • PVT analysis and fluid properties • Steady state and transient multiphase flow modeling • Hydrate, paraffin, and asphaltene control • Basics of scale, corrosion, erosion, and sand control • Fluid property and phase behavior modeling • Equations of state • Fugacity and equilibrium • Viscosities of oils • Thermal modeling • Multiphase pressure boosting • Slugging: hydrodynamic, terrain induced, and ramp up • Commissioning, start-up, and shutdown operations
Production Operations 1 – PO1

FOUNDATION

PO1 represents the core foundation course of PetroSkills' production engineering curriculum and is the basis for future oilfield operations studies. Course participants will become familiar with both proven historical production practices as well as current technological advances to maximize oil and gas production and overall resource recovery. The course structure and pace apply a logical approach to learn safe, least cost, integrated analytical skills to successfully design and manage oil and gas operations. Applied skills guide the participant with a framework to make careful, prudent, technical oil and gas business decisions. Currently emerging practices in the exploitation of unconventional resources including shale gas and oil, and heavy oil and bitumen complement broad, specific coverage of conventional resource extraction.

DEIGNED FOR

Petroleum engineers, production operations staff, reservoir engineers, facilities staff, drilling and completion engineers, geologists, field supervisors and managers, field technicians, service company engineers and managers, and especially engineers starting a work assignment in production engineering and operations or other engineers seeking a well-rounded foundation in production engineering.

YOU WILL LEARN HOW TO

- Recognize geological models to identify conventional and unconventional (shale oil and gas and heavy oil) hydrocarbon accumulations
- Understand key principles and parameters of well inflow and outflow
- Build accurate nodal analysis models for tubing size selection and problem well review
- Design and select well completion tubing, packer, and other downhole equipment tools
- Plan advanced well completion types such as multilateral, extended length, and intelligent wells
- Design both conventional and unconventional multi-stage fractured horizontal wells
- Apply successful primary casing cementing and remedial repair techniques
- Select equipment and apply practices for perforating operations
- Plan well intervention jobs using wireline, snubbing, and coiled tubing methods
- Manage corrosion, erosion, soluble and insoluble scales, and produced water handling challenges
- Apply well completion and workover fluid specifications for solids control and filtration
- Employ the five main types of artificial lift systems
- Identify formation damage and apply remedial procedures
- Design and execute successful carbonate and sandstone reservoir acidizing programs
- Understand the causes of sand production and how to select sand control options
- Understand the proper use of well completion fluids and related production chemistry
- Identify and successfully manage organic paraffin and asphaltene deposits
- Choose cased hole production logging tools and interpret logging results
- Understand modern conventional fracture stimulation practices
- Understand multistage, horizontal well shall gas and shall oil massive frac job design and operations
- Review heavy oil development and extraction including mining operations and current modern thermal processes

COURSE CONTENT

Importance of the geological model • Reservoir engineering fundamentals in production operations • Understanding inflow and outflow and applied system analysis • Well testing methods applicable to production operations • Well completion design and related equipment • Primary and remedial cementing operations • Perforating design and applications • Completion and workover well fluids • Well intervention: wireline, hydraulic workover units, and coiled tubing • Production logging • Artificial lift completions: rod pump, gas lift, ESP, PCP, plunger lift, and others • Problem well analysis • Formation damage • Acidizing • Corrosion control • Scale deposition, removal, and prevention
- Surfactants • Paraffin and asphaltene • Sand control • Hydraulic fracturing • Unconventional resources: shale gas and oil, heavy oil and bitumen

P01 is also available as a virtual course which is an enhanced version of the face-to-face public session.

11 MAR - 21 JUN 2019 $7570
27 MAR - 20 SEP 2019 $7570
16 SEP 2019 - 17 JAN 2020 $7570

PETROSKILLS.COM/PO1-BLENDED

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>DATE</th>
<th>TUITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALGARY, CAN</td>
<td>20-31 JUL 2019</td>
<td>$7750 + GST</td>
</tr>
<tr>
<td>DENVER, US</td>
<td>17-28 JUN 2019</td>
<td>$7570</td>
</tr>
<tr>
<td>DUBAI, UAE</td>
<td>2-13 DEC 2018</td>
<td>$9005 + VAT</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>22-APR-3 MAY 2019</td>
<td>$7750</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>22-APR-3 MAY 2019</td>
<td>$7750</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>22-OCT-31 MAY 2019</td>
<td>$7750</td>
</tr>
<tr>
<td>MIDLAND, US</td>
<td>16-25 MAR 2019</td>
<td>$7750</td>
</tr>
</tbody>
</table>

Surface Production Operations – PO3

BASIC

This course presents a basic overview of all typical oilfield treating and processing equipment. Participants should learn not only the purpose of each piece of equipment but how each works. Emphasis is on gaining a basic understanding of the purpose and integral workings of all types of surface facilities and treatment equipment. A major goal of this course is to improve communication among all disciplines, the field, and the office. Better communication should enhance operational efficiencies, lower costs and improve production economics. Example step-by-step exercises are worked together with the instructor to drive home the important points. Daily sessions include formal presentation interspersed with a good number of questions, discussion and problem solving.

DEIGNED FOR

All field, service, support, and supervisory personnel having interaction with Facilities Engineers and desiring to gain an awareness level understanding of the field processing of production fluids. This course is excellent for cross-training and delivers an understanding of all the fundamental field treating facilities.

YOU WILL LEARN

- A practical understanding of all the fundamental field treating facilities: what they are, why they are needed, how they work, what their properties and behavior of crude oil and natural gas that govern production operations
- Field processes for treating and conditioning fullwellstream production for sales or final disposition
- The basics of oilfield corrosion prevention, detection, and treatment
- Internal workings of separators, pumps, compressors, valves, dehydrators, acid gas treatment towers, and other treating equipment
- A wide range of produced fluid measurement and monitoring devices
- A description of treating equipment whether located on the surface, offshore platform, or sea floor

COURSE CONTENT

Properties of fluids at surface • Flowlines, piping, gathering systems; solids and liquid limits • Oil-water-gas-solids—contaminants • Separation and treatment • 2-3 phase separators, free water knockouts, centrifugal, filter • Storage tanks, gun barrels, pressure/vacuum relief, flame arresters • Stabilizers • Foams, emulsions, paraffins, asphaltenes, hydrates, salts • Dehydrators • Water treaters: SP packs, plate interceptors, gas flotation, coalescers, hydrocyclones, membranes • Acid gas treatment: coatings, closed system, chemicals, solvents, conversion, stress cracking • Valves: all types; regulators; Pumps/ Compressors: centrifugal, positive displacement, rotary, reciprocating, ejectors • Metering: orifice, head, turbine, and others • Corrosion/Scales: inhibition and treatment

Production Technology for Other Disciplines – PTO

FOUNDATION

PTO is an asset team course, as it introduces a broad array of important daily Production Technology practices. Terminology, expressions, axioms, and basic calculations regularly utilized by production techs are covered. Emphasis is upon proven technology required to effectively develop and operate an asset in a multidiscipline development environment. Practical application of technology is emphasized. Nodal analysis examples to assess well performance are set up. Well completion equipment and tools are viewed and discussed. Exercises include, basic artificial lift designs, acidizing programs, gravel pack designs, and fracturing programs. Shale gas and oil development challenges are thoroughly explained. Horizontal and multilateral technology is presented.

DEIGNED FOR

Exploration and production technical professionals, asset team members, team leaders, line managers, IT department staff who work with data and support production applications, data technicians, management, and all support staff who require a more extensive knowledge of production technology and engineering.

YOU WILL LEARN HOW TO

- Apply and integrate production technology principles for oilfield project development
- Choose basic well completion equipment configurations
- Perform system analyses (Nodal Analysis) to optimize well tubing design and selection
- Perform basic artificial lift designs
- Apply the latest shale gas and gas extraction technologies
- Understand the chemistry and execution of sandstone and carbonate acid jobs
- Design sand control gravel pack completions
- Evaluate well candidate selection to conduct a hydraulic fracturing campaign
- Apply new production technology advances for smart well completions
- Maximize asset team interaction and understand the dynamics between production technology and other disciplines

COURSE CONTENT

Role and tasks of production technology • Completion design • Inflow and outflow performance • and more...

PTO is also available as a self-paced, virtual course which is an enhanced version of the face-to-face public session.

4 MAR - 24 MAY 2019 $4325
20 MAY - 23 AUG 2019 $4325
9 SEP - 6 DEC 2019 $4325

PETROSKILLS.COM/VIRTUAL-PTO

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>DATE</th>
<th>TUITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBAI, UAE</td>
<td>16-20 SEPT 2018</td>
<td>$4170</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>16-20 SEPT 2018</td>
<td>$4170</td>
</tr>
</tbody>
</table>

* plus computer charge

Any course is available inhouse at your location. Contact us today.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
Gas Production Engineering – GPO

INTERMEDIATE 5-DAY

Learn the latest methods for calculating gas well performance from reservoir to sales. Reservoir performance covers the fundamentals of reservoir gas flow and details the best methods for testing wells, according to the time and money available. Reserve calculations and diagnostic testing from production data are covered. The importance of flow regime and non-Darcy flow on test design and interpretation is emphasized for new wells and for the possibility of improving the performance of older wells. Also discussed are performances of tight formations, horizontal wells, fractured wells, and methods for estimating gas reserves. Participants will learn to calculate and determine the effect of each system component on total well performance, which permits optimum sizing of tubing, flowlines, separators, and compressors. Problem-solving sessions allow participants to evaluate field problems. Participants receive complimentary software at the end of the course.

DESIGNED FOR
Production, reservoir and facilities engineers, and others involved in gas production, transportation, and storage including field supervisors.

YOU WILL LEARN HOW TO
- Apply proven techniques to field problems which increase profitability
- Calculate gas well performance from the reservoir to the sales line
- Optimize gas well production
- Relate reservoir and well performance to time
- Predict when a well will die due to liquid loading

COURSE CONTENT
Gas properties: real gas behavior equations of state, impurities, mixtures, phase behavior dew point, retrograde behavior, flash calculations; classifying gas reservoirs; Reservoir performance: gas well testing flow after flow, isochronal, stabilized inflow performance; turbulence and skin effects; perforation effects; tight well analysis; horizontal wells, hydraulically fractured wells; Reserve calculations: P/Z plots, energy plots, water influx, abnormal pressure effects; diagnostic testing based on production data; Flow in pipes and restrictions: pressure loss tubing, flowlines, choking, safety valves; effects of liquids-liquid loading, liquid removal methods, multiphase flow correlations; erosional velocity; Compression: types of compressors; compressor selection reciprocating and centrifugal; effects of variables; capacity and horsepower; Total system analysis: tubing and flowline size effects; perforating effects; relating deliverability to time; evaluating compressor installations; analyzing injection wells; Flow measuring; orifice metering design, accuracy, troubleshooting; other metering methods; Condensate reserves: reservoir types - wet gas, retrograde; reserve estimates, laboratory simulation; gas cycling; Field operations problems: interpreting P/Z plots; hydrate formation

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALGARY, CANADA</td>
<td>19-23 NOV 2018</td>
<td>$3315+GST</td>
</tr>
<tr>
<td></td>
<td>15-19 NOV 2019</td>
<td>$3525+GST</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>10-14 SEPT 2018</td>
<td>$4385</td>
</tr>
<tr>
<td></td>
<td>16-20 SEPT 2019</td>
<td>$4450</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>29 JUL-2 AUG 2019</td>
<td>$5205</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>20-24 MAY 2019</td>
<td>$5160+VAT</td>
</tr>
</tbody>
</table>

* plus computer charge

Surface Water Management in Unconventional Resource Plays – SWM

INTERMEDIATE 3-DAY

Water management in unconventional resource plays has become a critical topic to the oil and gas industry in the last decade. In order to establish and implement an optimized water management plan for hydraulic fracturing operations, operators and service companies need an understanding of a broad array of subjects, including water chemistry, systems modeling, water treatment technology, the regulatory landscape, and best practices for field operations. This course first establishes a foundation of knowledge regarding water awareness, water chemistry, fluid dynamics, and water analysis tools. Upon this foundation the course will build a model for optimizing water management in support of hydraulic fracturing operations, providing reviews of best practices and the latest industry technology, while always considering key stakeholders. This course is designed for the practitioner, for the people who will design and implement all or part of a water management plan in unconventional resource plays.

DESIGNED FOR
Production, completion, operations, and surface facilities engineers; operations managers, logistics coordinators, field superintendents; any personnel involved in establishing, improving, or supervising the implementation of an organization’s water management plan; personnel in service organizations seeking a more thorough understanding of the water system in unconventional resource plays.

YOU WILL LEARN HOW TO
- Design and implement a water management plan for an unconventional resource play
- Assess the regional hydrological cycle in the operational area
- Adopt emerging best practices regarding water management?
- Establish a water sampling and analysis program
- Design and run a water treatment technology pilot test
- Find the lowest cost solution for sourcing fluid for hydraulic fracturing operations
- Select a water treatment technology for a project
- Manage the primary service/equipment providers critical to water management
- Establish basic water quality requirements necessary for frac fluid
- Build a water management plan that complies with regulations
- Build a water management cost model to use as a tool to optimize a water management plan

COURSE CONTENT
Global water awareness and the oil and gas industry’s impact; Flowback and produced fluid • Basic water chemistry focused on oilfield concerns • Water quality considerations for hydraulic fracturing operations • Water sampling and analysis, in the field and in the lab • Water treatment for reuse and recycling programs • Acquisition, storage, transportation, disposal, and treatment of water • Holistic field water management • and more...

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON, US</td>
<td>5-7 NOV 2018</td>
<td>$3325</td>
</tr>
<tr>
<td></td>
<td>13-15 MAY 2019</td>
<td>$3305</td>
</tr>
<tr>
<td>PITTSBURGH, US</td>
<td>10-12 SEPT 2018</td>
<td>$3205</td>
</tr>
<tr>
<td></td>
<td>9-11 SEPT 2019</td>
<td>$3295</td>
</tr>
</tbody>
</table>

IN-HOUSE TRAINING WHEN YOU NEED IT, WHERE YOU NEED IT.

DO YOU HAVE TRAINING NEEDS? WE CAN HELP!

In-house courses deliver private, on-site training to your group, whenever, wherever, and however you need it.

Save time, money, and travel hassles by bringing our course to your site, or any location that suits you.

If you do not have enough participants for an in-house session, we may be able to schedule an on-demand public session in your location.

For more information, or to reserve training for your team, go to petroskills.com/inhouse
Oil and Gas Processing Facilities for Operations and Maintenance – OT1

BASIC 5-DAY

The public course content is governed by the common production / processing facilities in the regions where the course is being held. There are gas / LNG content focus, gas / expander plant, or oil / water / gas focused courses. All locations include an overview of gas processing, industry terminology, process drawings, units of measurement, hydrocarbons physical properties, phase behavior fundamentals, plus the localized topics below. Course content is customizable to client needs at no additional cost.

Marcellus / Bakken Gas Processing Modules
Water / hydrocarbon behavior
Basic principles of fluid flow
Amine gas sweetening
Mole sieve dehydration
Mechanical Refrigeration
GSP (T/E) Process Operations
NGL stabilization and fractionation
Process troubleshooting
Perimian / Eagle Ford / North Sea Oil and Gas Production and Processing Modules
Basic principles of fluid flow
Gas lift systems
Production separators
Crude oil dehydration
Crude oil desalting
Crude oil, condensate, and NGL stabilization
Crude oil storage and vapor recovery systems
Crude oil pipeline systems
Produced water treating
Process troubleshooting
Australia Gas Processing Modules
Water / hydrocarbon behavior
Basic principles of fluid flow
Amine gas sweetening (not in Brisbane)
Mole sieve dehydration
Mechanical refrigeration
Cascade refrigeration
Mixed refrigerants
NGL stabilization and fractionation
LNG facilities
Process troubleshooting

DESIGNED FOR
Facility operators who require a working knowledge of the various processes used in production fluid conditioning and processing, including the common operational difficulties that may arise and operational tactics used to resolve them. Also suitable for maintenance technicians, supervisors, and managers, as well as other non-engineering personnel who would benefit in an understanding of gas processing techniques that can be applied in their daily work activities.

YOU WILL LEARN
- The effects of produced fluid compositions (oil/gas/water) on facility operation
- About separation, conditioning, and processing operations to meet product specifications on oil, gas, and produced water streams for disposal/re-use
- How to operate facilities to minimize operating costs
- How to apply course material to troubleshooting equipment and unit operations

Amine Sweetening and Gas Dehydration for Operations and Maintenance – OT41

FOUNDATION 4-DAY

This course will provide the basic knowledge required for understanding operating issues in natural gas amine sweetening and dehydration units. Course content is customizable to client needs at no additional cost.

DESIGNED FOR
Plant and facility operations and maintenance technicians, supervisors, and managers.

YOU WILL LEARN
- Basic principles of gas processing
- The physical properties of hydrocarbons
- Practical application of the principles of hydrocarbon phase behavior
- To determine the water content of produced natural gas and the effects of acid gases
- The problems and dangers of hydrate formation
- Effective methods of hydrate inhibition
- Two types of dehydration processes: absorption and adsorption
- Principles and operational elements of TEG gas dehydration
- Principles and operational elements of mole sieve gas dehydration
- Principles and operational elements of amine gas sweetening

COURSE CONTENT
Physical properties of hydrocarbons • Phase behavior fundamentals • Water/hydrocarbon behavior • TEG equipment • TEG system operating procedures and problems • Care of the TEG system • Mole sieve gas dehydration • Operation and adsorbent life • Mole sieve operating problems and troubleshooting • Amine gas sweetening • Amine system operating procedures and problems • Makeup water • Anti-foam chemicals • Managing system corrosion

NGL Extraction, Stabilization and Fractionation for Operations and Maintenance – OT42

FOUNDATION 4-DAY

This course is designed to deliver the basic knowledge required for understanding operating issues in NGL (Natural Gas Liquids) extraction and stabilization/fractionation. Course content is customizable to client needs at no additional cost.

DESIGNED FOR
Plant and facility operations and maintenance technicians, supervisors, and managers.

YOU WILL LEARN
- About the various unit operations required in gas processing and how they impact one another
- Conditions that favor hydrate formation, and methods to mitigate hydrates (hydrate inhibition)
- Principles and operations of gas compressors (centrifugal/screws/reciprocating)
- Principles, operations, and troubleshooting mechanical refrigeration systems (propane economized systems)
- Molecular sieve dehydration operations and issues
- Operating principles, typical performance, and issues in NGL extraction processes (refrigeration/JT valve/turbocompressors)
- NGL stabilization, stabilization and fractionation principles, operations, controls, and common operating problems

COURSE CONTENT
Overview of gas processing • Water/hydrocarbon behavior (hydrates and hydrate inhibition) • Compression • Mechanical refrigeration • Molecular sieve dehydration • NGL extraction (refrigeration with MEG inhibition, valve expansion, turbocompressors) • Fractionation fundamentals • Physical properties of hydrocarbons • Phase behavior of hydrocarbons • Troubleshooting

LNG Facilities for Operations and Maintenance – OT43

FOUNDATION 5-DAY

This 5-day, LNG facilities course provides an overview of field operations, and an in-depth review of the in-plant equipment and processes. The course includes the two most common types of LNG liquefaction processes, the AP-C3MR™ and ConocoPhillips Optimized Cascadex® Process. Class exercises/problems focus on the application of theory to operational trends, so operators can understand their processes and become more proficient at identifying issues and troubleshooting problems before production suffers. Course content is customizable to client needs at no additional cost.

DESIGNED FOR
LNG facility operators who require a working knowledge of the various processes used in LNG facilities, including the common operational difficulties that may arise and operational tactics used to resolve them. Also suitable for maintenance technicians, supervisors, and managers, as well as other non-engineering personnel who would benefit from an understanding of gas processing techniques that can be applied in their daily work activities.

YOU WILL LEARN
- Overview of oil and gas processing, including typical field operations
- The required feed quality specifications for LNG facilities, including issues with common contaminants
- Separation equipment with a focus on critical separation equipment in LNG facilities
- Operational aspects of acid gas removal units (AGRU) for LNG facilities
- Gas dehydration processes for LNG (including pre-cooling and molecular sieve)
- Mercury removal processes for LNG, and location/performance in the facility
- Centrifugal compressor operations and issues
- Refrigeration system operational principles (propane, cascade and mixed refrigerant)
- NGL stabilization and fractionation processes (regional)
- LNG C3MR™ Process Overview
- LNG AP-C3MR™ Process Overview
- LNG storage operations and considerations
- LNG ship loading and boil-off gas management issues and considerations
- Application of hydrocarbon physical properties and phase behavior to understand the process operational issues within the overall facility
- Gas turbine operations and issues
- Hydrocarbon physical properties and phase behavior as the natural gas flows through the plant

COURSE CONTENT
Overview of oil and gas processing • Separation equipment • LNG feed quality requirements • LNG pre-treatment systems (AGRU) • Molecular sieve/Hg removal • Fundamentals of centrifugal compression • Refrigeration principles (propane, cascade and mixed refrigerant) • NGL stabilization and fractionation (regional) • LNG COP Cascade® Process Overview • LNG APCI C3MR™ Process Overview • LNG storage operations and considerations • LNG shiploading operations and considerations • Boil-off gas management methods • and more...

2018-19 Schedule and Tuition (USD)

HOUSTON, US
12-16 NOV 2018
$3940

See website for dates and locations.

See website for dates and locations.

See website for dates and locations.

Any course is available inhouse at your location. Contact us today.
Crude Oil Pipeline Operations – OT50

FOUNDATION 5-DAY

This course utilizes case studies and industry best practices for operating and maintaining onshore crude oil and liquid pipeline systems that maximize life cycle reliability, employee, public, and environmental safety, and operational cost effectiveness. It focuses on open discussions and troubleshooting techniques that may be applied to crude, HVL (High Volatility Liquids) and refined product pipelines and their associated infrastructure. The course aims to improve the operation profitability and communication with management and engineering staff. Course content is customizable to client needs at no additional cost.

DEIGNED FOR

Pipeline operations personnel who require a working knowledge of onshore liquid pipeline and terminal systems, including the common operational difficulties that may arise and operational tactics used to resolve them. Also suitable for maintenance personnel, metering technicians, lead supervisors, area managers, and engineering staff that need a working knowledge of field pipeline operations.

YOU WILL LEARN HOW TO

- Apply regulatory codes, standards, and industry guidelines (PSMSA 195, ASME B31.4, API-1173 and others) that control and guide the operation and maintenance of pipeline facilities.
- Explain fluid properties and behavior of crude oils, wax behavior, temperature relationships and use of DRA in crude oil pipelines.
- Explain pipeline hydraulics, pipeline pressure gradients and predict capacity on the system.
- Identify pipeline MOP; surge and causes of overpressure and mitigation measures.
- Explain pipeline facilities; pump stations, filtration, metering and LACT units, sampling and testing, pigging equipment, tank terminals and truck/rail loading facilities.
- Explain pipeline operations: commissioning and purging/filling, startup, stopping, pigging and pig receiver operations, measurement and sampling activities.
- Identify principle causes of loss of containment and mitigating measures; corrosion, environmental cracking, overpressure, 3rd party damage and error.
- Review regulatory compliance requirements for CFR 49, Part 195, to better prepared in the case of compliance audits.
- Explore emergency response measures to spills and loss of containment

COURSE CONTENT

Crude oil transportation systems • Industry codes and regulations, scope and applicability • Crude oils, waxes and DRA, fluid properties and behavior • Hydraulic analysis of pipelines and gradients • Pipeline pumps – components, operation, seal systems and seal leak detection • Pipeline surge and overpressure protection systems • Pipeline facilities – filtration, pressure controls, pigging equipment • Terminal facilities – tanks, truck/rail loading, metering, sampling and proving • Pigging goals, processes and activities • Pipeline repairs and maintenance • Corrosion overview and prevention • Leak detection methods • CFR 49, Part 195 review of documentation requirements and terminology

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Fee (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBAI, UAE</td>
<td>14-18 OCT 2018</td>
<td>$5025+VAT</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>21-25 OCT 2018</td>
<td>$5025+VAT</td>
</tr>
<tr>
<td>ORLANDO, USA</td>
<td>28-30 OCT 2018</td>
<td>$5025+VAT</td>
</tr>
</tbody>
</table>

Any course is available inhouse at your location. Contact us today.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
How can you minimize environmental, health and safety risks—anytime, anywhere?

Close the gaps with e-learning!

ePilot™ ONLINE EHS COURSE LIBRARY

Many employers are struggling with limitations on their training resources. Yet the need to stay up-to-date with safety and regulatory mandates is critical. The gaps between what your workers current knowledge and what they need to know to perform their jobs are gaps. And gaps increase the risks to safety and compliance. A single gap can seriously jeopardize every safety and quality improvement effort and a company’s good standing with regulatory compliance agencies. But what can you do to reduce the risk and eliminate gaps?

PetroSkills ePilot™ EHS Library can help you:

- quickly **identify knowledge gaps** and generate pathways to proficiency
- achieve **compliance goals** with compliance-focused management and reporting
- reduce **time-to-proficiency**, enable refresher training, and improve on-boarding
- reduce **expenses** of classroom scheduling, travel, and instructor fees

For more information, please visit www.petroskills.com/elearning or email solutions@petroskills.com

Competent Person Fall Protection – FPST

BASIC 5-Day

This comprehensive training program is for anyone who develops or impacts fall protection policy, as well as those involved with design practices, facility or production modifications and equipment procurement. The goal of training is to provide participants with the knowledge to solve fall protection issues before they arise. Attendees will acquire the tools required to become certified OSHA competent persons and the skills to develop and implement a comprehensive, cost effective and attainable fall hazard control system. The course provides interactive instruction, multimedia resources, and knowledge check that have been developed to train attendees to the competent person level.

DESIGNED FOR

This course is intended for safety directors, safety professionals, fall protection program administrators, managers, facility engineers, production supervisors, and maintenance supervisors.

YOU WILL LEARN

- To recognize myths and facts surrounding fall protection
- To describe how fall protection fits into the core elements of your safety program
- To determine the key resources for identifying fall hazards
- To rank abatement options using objective criteria
- Regulatory requirements for access, surfaces, and edge protection
- About lift equipment including requirements for vacating or entering an aerial lift
- The regulations and standards for scaffolding
- How to minimize the dangers of falling objects
- About the initial ANSI fall protection standards and the new ones within the Z359 family
- The difference between certified and non-certified anchorages
- How to recognize how ANSI applies to various equipment components
- How to inspect fall hazard equipment
- About typical roof fall hazards
- About fall clearances including sample fall clearance calculations
- To identify the elements of a horizontal lifeline system and recognize the pitfalls
- The importance of preplanning a fall protection rescue as a part of a pre-task plan
- To develop a rescue procedure for a specific personal fall arrest system

COURSE CONTENT

Fall protection program overview • Fall hazard risk assessment • Fall hazard abatement • Engineering controls • Lift equipment • Scaffolding • OSHA requirements and ANSI standards • Equipment inspection • Roof fall protection • Fall clearances • Anchorages • Horizontal lifelines • Rescue

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAKERSFIELD, US</td>
<td>16-14 DEC 2018</td>
<td>$4690</td>
</tr>
<tr>
<td></td>
<td>9-13 DEC 2019</td>
<td>$4170</td>
</tr>
<tr>
<td>DUBAI, UAE</td>
<td>20-24 OCT 2019</td>
<td>$3345+VAT</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>13-16 NOV 2018</td>
<td>$4780+VAT</td>
</tr>
<tr>
<td></td>
<td>16-22 NOV 2019</td>
<td>$4935+VAT</td>
</tr>
<tr>
<td>PITTSBURGH, US</td>
<td>13-17 MAR 2019</td>
<td>$4220</td>
</tr>
</tbody>
</table>

Any course is available inhouse at your location. Contact us today.
Applied Environmental Management Systems – AEM

FOUNDATION 5-Day NEW

Since the Rio de Janeiro Earth Summit (UNCED) held in 1992, environmental issues have been drawn to the forefront of organizations’ operations and possibly their reputations. A review of the world’s press often reveals spills, toxic releases, fires, and other pollution events. There are efficiency opportunities from better use of energy, water and from reducing waste in a systematic way. Participants will receive a template Environmental Management System (EMS) manual for their own use as part of the study materials. This class provides a complete review of the international standard for environmental management, ISO 14001:2015, as well as other environmental management techniques. Over five days, the class works through the PDCA improvement cycle provided by ISO 14001, teaching the tools and techniques of excellent practice. The course includes a week-long practical implementation case study set in the fictional highly-realistic setting of oil products distribution company Melvis Group where the new learning is validated through application. Please see www.melvisgroup.com for more information.

DESIGNED FOR

Environmental professionals seeking a deeper knowledge of environmental management systems (EMS) and/or external certification to ISO 14001, H&S managers wanting to broaden their knowledge in a related discipline, project managers, other staff with delegated environmental responsibilities such as those related to energy, waste, or water.

YOU WILL LEARN HOW TO

- Successfully design and use the principle elements of an environmental management system in a typical petrochemical organisation
- Identify and integrate key tools associated with Occupational Health and Safety (OH&S) management, including environmental impact assessment, setting and progressing environmental objectives, emergency preparedness, and incident investigation
- Reflect on, shape, and initiate improvements in the environmental (HSE) culture of an organization
- Communicate a powerful improvement message to a team of senior leaders

COURSE CONTENT

Context of the organisation • Leadership and commitment • Environmental policy • Roles, responsibilities, and authorities • Actions to address risks and opportunities (aspects, compliance, objectives) • Resources, competence, awareness, communication, documentation • Operational planning and control • Emergency preparedness and response • Monitoring, measurement, analysis, and evaluation • Internal audit • Management review • Improvement

Applied Occupational Health and Safety Management Systems – HSM

FOUNDATION 5-Day NEW

Every 15 seconds, somewhere in the world, a worker is killed and over 150 others are injured. Our members’ and clients’ experience is that committed application of an Occupational Health and Safety Management System (OHSMS) can reduce such incidents, while providing a platform for sustained cultural change. We call this ‘predict and prevent’ instead of the unstructured approach of ‘react and remedy.’ Participants will receive a template OH&S-MS manual for their own use as part of the study materials. This class provides a complete review of the new international standard for occupational health and safety management, ISO 45001:2018, as well as an overview of other common OH&S-MS (HS(G)S, ILO-GSH-2001, IS0-9001 HSE-MS) that can be aligned to organizations’ own systems. Over five days, the class works through a Plan, Do, Check, Act improvement cycle teaching the tools and techniques of excellent practice. The course includes a week-long practical implementation case study set in the fictional highly-realistic setting of oil products distribution company Melvis Group where the new learning is validated through application. Please see www.melvisgroup.com for more information.

DESIGNED FOR

Health and Safety (H&S) professionals who want to take advantage of the new improvement opportunities presented by ISO 45001 (or seek external certification), project managers, contract managers, members of committees, directors of smaller organizations with limited access to specialist H&S advice.

YOU WILL LEARN HOW TO

- Successfully design and use the principle elements of an OH&S-MS in a typical petrochemical organisation
- Identify and integrate key tools associated with OH&S management, including HazzID, risk assessment, JSA, PTW, LOT0, active and reactive monitoring
- Reflect on, shape, and initiate improvements in the safety culture of an organization
- Communicate a powerful improvement message to a team of senior leaders

COURSE CONTENT

Context of the organisation • Leadership and commitment • OH&S policy • Roles, responsibilities, and authorities • Actions to address risks and opportunities • Objectives and planning to achieve them • Support (competence, awareness, communication, documentation) • Operational control • Emergency preparedness • Performance evaluation (monitoring, internal audit, management review) • Improvement

Management Systems Lead Auditor – AUD

INTERMEDIATE 5-Day NEW

Our Lead Auditor course provides a rigorous approach to conducting a risk-based internal audit of any structured means of control aligned to the international standard guidance ISO 19011. We use ISO 14001 (environment) and ISO 45001 (health and safety) as reference frameworks, but our approach could be applied to ISO 9001 (quality) or your own organization’s management systems. A copy of the best-selling book Health and Safety: Environment and Quality Audits – A Risk-based Approach is included for each participant. For the duration of the class, participants are assigned to a 5-6-person audit team, led by an experienced Lead Auditor. This course allows participants to relate audit to the essential principles of corporate governance and risk management. It also adds value for senior management from the auditing process through provision of a high-level, forward-focused opinion. The course includes a week-long practical implementation case study set in the fictional highly-realistic setting of oil products distribution company Melvis Group where the new learning is validated through application. Please see www.melvisgroup.com for more information.

DESIGNED FOR

New or aspiring management system auditors, experienced auditors aspiring to progress to Lead Auditor status, department managers wanting to understand the audit process or prior to secondment to an internal audit team.

YOU WILL LEARN HOW TO

- Lead/participate in an audit or review in line with the standards of the auditing profession, including ISO 19011
- Initiate an internal audit plan
- Prepare a risk-based audit plan to steer the conduct of any audit
- Conduct audit fieldwork including the necessary reviews and tests to substantiate findings
- Report the audit results and present to senior management

COURSE CONTENT

Risk management and business control • Principles of auditing (ISO 19011) • Initiating and planning a management systems audit • Review and test • Effective interview skills • Legal and ethical aspects of auditing • Developing audit findings and writing recommendations • Reporting audit results and following up

Introduction to Petroleum Business – IPB

BASIC 3-DAY

Creation of shareholder value should be at the heart of every business decision. This course is designed for technical professionals in the petroleum industry who want to understand the nature of the petroleum business and how you will contribute to the financial success of your company. The course will introduce delegates to the structure of the petroleum business including supply and demand, how oil companies are organized and financed and what it takes to be financially successful. Success will be explored through an understanding of how we calculate long-term shareholder value both at the corporate and project level as well as the valuation of competitive advantage and incorporation of risk assessment in our models. Delegates will be introduced to the primary accounting financial statements and what they tell us about a company. Common accounting and economic terms and metrics will be reviewed. Participants should bring a PC with excel software to complete exercises.

DESIGNED FOR

Engineers, geologists, geophysicists, landmen, HR and other non-finance and accounting professionals who need an introduction to the business aspects of the petroleum industry including the interplay of finance and economic evaluation in the creation of long-term shareholder value.

YOU WILL LEARN

- How the petroleum business is structured and capital is raised
- What is shareholder value and how it is created
- The critical importance of seeking competitive advantage
- Economic and accounting terminology
- How to make an economic valuation of an investment and assess its competitive advantage
- How value creation impacts share price
- How shareholder value is measured
- What is risk and how it is assessed in economic evaluations

COURSE CONTENT

The importance of creating value for shareholders • History and characteristics of the oil and gas business • Introduction to Economic Evaluation including Net Present Value, Internal Rate of Return, and risk • Introduction to the key accounting financial statements and terms • The need for competitive advantage and how it is measured • How to develop spreadsheets to conduct economic evaluations

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Conference</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPB1001</td>
<td>HOUSTON, US</td>
<td>10-12 SEPT 2018</td>
<td>$3105</td>
</tr>
</tbody>
</table>

* plus computer charge

Any course is available inhouse at your location. Contact us today.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
Basic Petroleum Economics – BEC

BASIC 3-DAY
Could you answer the following three questions for your next project? What will it cost? What is it worth? Will it earn sufficient profit? Before undertaking any project, these questions should be answered, and this course will provide the fundamentals necessary to enable you to do so. Contractual arrangements, which also significantly impact the economic viability of a project, are covered. Participants practice cash flow techniques for economic evaluations and investigate frequently encountered situations. Each participant will receive Economics of Worldwide Petroleum Production, written specifically for PetroSkills courses.

DESIGNED FOR
Managers, engineers, explorationists, field accounting supervisors and other personnel who need to develop or improve their skill and understanding of basic economic analysis and profitability of petroleum exploration and production.

YOU WILL LEARN
• How to evaluate the economic viability of a project
• Cash flow techniques applicable in economic evaluations
• How to use economic criteria to choose investments
• Models to weigh risk and uncertainty

COURSE CONTENT
Forecasting oil production • Defining: “reserves”, operating expenses, capital expenditures, inflation, factors affecting oil and gas prices • Cash flow techniques • Economic criteria: interest, hurdle rate, time value of money, selection, ranking criteria • Risk: uncertainty; types of risk, mathematical techniques, probabilistic models, uncertainty in economic analysis • Tips on economic factors in computer spreadsheet analysis • Ethics in economic analyses

Managing Non-Technical Risks – MNTR

BASIC 4-DAY
Non-technical or societal risks have become the main source of business delays and budget overruns in the oil and gas industry. Non-technical risks typically are related to political, regulatory, health, safety, security, environmental, and social issues. Mitigation requires good external awareness and stakeholder engagement skills, but also the willingness of technical and commercial teams to work closely together with the non-technical disciplines to accommodate non-technical perspectives in project designs and plans. This course looks at both the internal and the external challenges that a company may face related to stakeholder engagement. On the external side, we look at current trends in western and non-western societies, we study key stakeholder groups, in particular those seen as “difficult to deal with,” and then cover the practicalities of creating and maintaining effective relationships. However, a company will not be effective in its response to the external world if it is not well organized internally. Therefore, this course will also look at processes and tools to ensure internal alignment and cooperation with the aim to link external perspectives to business decision making. A key methodology is the quantification of non-technical risks because it helps prioritize and focusing of resources and mitigating activities.

DESIGNED FOR
Managers, engineers, explorationists, field accounting supervisors and other personnel who need to develop or improve their skill and understanding of basic economic analysis and profitability of petroleum exploration and production.

YOU WILL LEARN
• How to evaluate the economic viability of a project
• Cash flow techniques applicable in economic evaluations
• Models to weigh risk and uncertainty
• Techniques to determine expected value
• The cost of finance, budgeting, and contractual agreements with a project
• The basic principles of accounting

COURSE CONTENT
Forecasting oil production • Defining: reserves, operating expenses, capital expenditures, inflation, factors affecting oil and gas prices • Cash flow techniques • Economic criteria: interest, hurdle rate, time value of money, selection, ranking criteria • Risk: uncertainty; types of risk, mathematical techniques, probabilistic models, uncertainty in economic analysis • Financing, ownership in the oil and gas industry: business arrangements between operators, between mineral owners • Accounting versus cash flow: accounting principles and definitions, differences between accounting cash numbers, depreciation, depletion, amortization • Budgeting: types, processes, selecting of projects for the budget • Economic Analysis of operations • Computer economics software • Tips on economic factors in computer spreadsheet analysis • Ethics in economic analyses

Cost Management – CM

FOUNDATION 5-DAY
Few problems threaten the petroleum businesses more than uncontrolled costs. Economic realities have made it necessary for most companies to operate with a “lean and mean” philosophy. As the price of our products fluctuates widely, the most vulnerable companies are those that are ineffective in understanding and managing their costs. The ability to properly manage costs is now paramount in a company’s success and even their ultimate survival. The energy industry goes through its most monumental changes since the 1970s, the companies that can identify efficiencies and inefficiencies will be able to react to the challenges of the global market place, thus generating higher profits. This seminar is an introduction to Practical Cost Management techniques designed to help the participant better understand the underlying dynamics of cost using recent events and trends, using relevant exercises, timely case studies and role-playing techniques.

DESIGNED FOR
Operating managers, personnel, project managers, technology managers, budget managers, or anyone wanting to manage costs more efficiently and effectively. A familiarity with finance is helpful but not required.

YOU WILL LEARN HOW TO
• Understand the different cost classifications and cost drivers
• Determine and monitor the behavior of costs
• Build your own activity dictionary
• Design management control system that works
• Understand the principles of Activity Based Cost Management (ABCM) and its development and implementation
• Analyze capital projects using the proper tools and techniques
• Manage and not mismanage costs
• Develop tools to use for managing costs and how to evaluate costs for effectiveness

COURSE CONTENT
Defining costs, classifications and terminology for an ESP company • Defining cost objects, cost drivers and their behaviors • Analyzing different types of cost management systems • Using Activities Based Management (ABM) to monitor costs and processes Building and using an activity dictionary • Using value added costs versus non-value added costs for improvement Distinguishing between cost effectiveness and cost efficiencies • Developing productivity measurements that work • Operating Cost Management using the budgets efficiently and effectively Using GAP analysis in measuring productivity of costs • Support departments cost allocations Transfer pricing • Determining the break-even cost and volumes • Using variance analysis for budgeting and monitoring performance • Optimizing the supply chain • Developing and analyzing capital investment projects Replace versus maintain • Life Cycle Costing • Using different scenarios to more effectively manage costs and performance • Measuring and using capacity management techniques

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Start Date</th>
<th>End Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON, UK</td>
<td>15-19 FEB 2019</td>
<td>21-25 FEB 2019</td>
<td>$4550+VAT</td>
</tr>
<tr>
<td>ABU DHABI, UAE</td>
<td>14-17 JUL 2019</td>
<td>20-23 JUL 2019</td>
<td>$4225+VAT</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>12-16 NOV 2018</td>
<td>18-22 NOV 2018</td>
<td>$4600</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>08-12 SEP 2018</td>
<td>15-19 SEP 2018</td>
<td>$4955+VAT</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>01-05 OCT 2018</td>
<td>08-12 OCT 2018</td>
<td>$4955+VAT</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>01-05 DEC 2018</td>
<td>07-11 DEC 2018</td>
<td>$4955+VAT</td>
</tr>
</tbody>
</table>

Any course is available inhouse at your location. Contact us today.
Any course is available inhouse at your location. Contact us today. +1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)

PETROLEUM BUSINESS

Economics of Worldwide Petroleum Production – EWP

FOUNDATION 5-DAY

In the area of corporate and international petroleum production, do you know how to choose the best investments? Can you properly evaluate investment opportunities? Do you know what investment appraisal methods and techniques are available at your disposal?

- **Inhouse**
- **Contact us today!**
- **+1.918.828.2500**
- **petroskills.com**
- **+1.800.821.5933 (toll free North America)**

COURSE CONTENT

- **Pricing:** natural gas, marker crude, OPEC, spot and futures markets, transportation
- **Production rates:** mathematical models
- **Cash flow:** revenue, capital, operating costs, spreadsheet exercises
- **Economic evaluation:** present value concepts, sensitivity and risk analysis, decision trees, royalty, sources of capital, incremental economics, sunk costs, inflation
- **Budgeting:** examples and exercises, long-range planning
- **Cash versus write-off:** depreciation, depletion, and amortization
- **How to read an annual report:** statements, financial ratios, what is and is not included, reading between the lines
- **Worldwide business operations:** concessions, licenses, production sharing contracts, joint ventures, capital of capital, sources of funding, debt and equity
- **Performance appraisal:** buy/sell assessments
- **Computer economics software:** Tips on format and inclusion of economic factors in computer spreadsheet analysis
- **Ethics in economic analysis**

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON, US</td>
<td>3-7 JUNE 2019</td>
<td>$4375</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>8-12 OCT 2018</td>
<td>$4990+VAT</td>
</tr>
<tr>
<td></td>
<td>4-8 NOV 2019</td>
<td>$5055+VAT</td>
</tr>
<tr>
<td>TULSA, US</td>
<td>10-14 SEP 2019</td>
<td>$4190</td>
</tr>
</tbody>
</table>

Petroleum Finance and Accounting Principles – PFA

FOUNDATION 5-DAY

Making the most efficient use of your resources is critical to the success of any company. Finance and accounting comprise the universal business language and help you manage those resources effectively. Planning and decision making that occur in an informal financial context permit better application of resources and promote competitive advantage. The aim of this course is to improve delegates’ job performance by enhancing their understanding of the current international practices in finance and accounting within the E&P industry. The latest issues are discussed.

DESIGNED FOR

Personnel new to the oil and gas accounting industry - accounting, finance, or economists, others desiring to understand or refresh their knowledge of basic petroleum accounting concepts, financial personnel needing to understand unique issues as they relate to the petroleum industry, and technical or asset team members looking for the basic concepts of accounting and finance. Participants are encouraged to bring their company’s financial reports. This course may qualify for up to 34 hours of CPE for US CPAs.

YOU WILL LEARN HOW TO

- Understand financial reporting requirements for oil and gas companies under IFRS and U.S. GAAP
- Apply basic concepts and terminology for accounting and finance in oil and gas
- Create accounting statements, including a cash flow statement from data accumulation to audited financial statements
- Distinguish between the different financial statements and their roles
- Distinguish between financial, managerial, and contract (joint operations) accounting
- Recognize the different oil and gas accounting methods
- Determine the difference between profits and cash flow
- Apply capitalization rules and depreciation methods
- Account receivables treatments of joint ventures such as Production Sharing Agreements
- Evaluate capitalized assets using a ceiling-test
- Read and understand the disclosures for oil and gas companies
- Recognize how accounting decisions can affect earnings, cash flows, and operational decisions
- Calculate, understand, and analyze financial reports and basic oil and gas ratios

Petroleum Risk and Decision Analysis – PRD

FOUNDATION 5-DAY

Good technical and business decisions are based on competent analysis of project costs, benefits and risks. Participants learn the decision analysis process and foundation concepts so they can actively participate in multi-discipline evaluation teams. The focus is on designing and solving decision models. About half the problems relate to exploration. The methods apply to R&D, risk management, and all capital investment decisions. Probability distributions express professional judgment about risks and uncertainties and are carried through the calculations. Decision tree and influence diagrams provide clear communications and the basis for valuing each alternative. The complementary Monte Carlo simulation technique is experienced in detail in a hand-calculation exercise. Project modeling fundamentals and basic probability concepts provide the foundation for the calculations. The mathematics is straightforward and mostly involves only common algebra. This is a fast-paced course and recommended for those with strong English listening skills. This course is intended as the prerequisite for the Advanced Decision Analysis with Portfolio and Project Modeling course.

DESIGNED FOR

Geologists, engineers, geophysicists, managers, team leaders, economists, and planners.

YOU WILL LEARN HOW TO

- Describe the elements of the decision analysis process and the respective roles of management and the analysis team
- Express and interpret judgments about risks and uncertainties as probability distributions and popular statistics
- Represent discrete events in influence diagrams, probability trees, and joint probability tables
- Solve for expected values with decision trees, payoff tables, and Monte Carlo simulation (hand calculations)
- Craft and solve decision models
- Evaluate investment and design alternatives with decision tree analysis
- Develop and solve decision trees for value of information (VOI) problems

Advanced Decision Analysis with Portfolio and Project Modeling – ADA

SPECIALIZED 5-DAY

Quality forecasts and evaluations depend upon well-designed project and portfolio models that are based upon clear decision policy; sound professional judgments, and a good decision process. In this course participants learn to build good models. We use the familiar Microsoft Excel spreadsheet as the platform for project and risk assessment models. Add-in software provides Monte Carlo and decision tree capabilities. The course emphasis is on the evaluation concepts and techniques, rather than particular software programs.

DESIGNED FOR

Evaluation engineers, analysts, managers, planners, and economists. This course is intended for professionals involved with developing project evaluation, portfolio, and other optimizing and assessment models. Prior background in decision analysis is expected. Before registering, please visit http://www.decisionapplications.com/ada-pre-read to review a course prerequisites list and to take a short self-assessment quiz. You may login using ‘ada’ (no quotes) as the password.

YOU WILL LEARN HOW TO

- Frame, build, and evaluate decision models and extract key insights
- Apply the exponential utility function for risk policy
- Design investment portfolio optimization models that include constraints, requirements, and typical interrelationships between projects
- Use decision tree software for value of imperfect information analysis
- Use Monte Carlo simulation software with optimization
- Develop quality Excel models for projects and portfolios

COURSE CONTENT

- **Decision Modeling:** application of DA process for modeling, influence diagrams, judgments and biases; sampling error bias; sensitivity analysis; documentation and good modeling practices; real options overview
- **Monte Carlo Simulation:** multi-pay prospect risking (similar to play risk) and decision analysis; the distribution of probabilities; risk and uncertainties; and eliciting judgments, choosing distribution types
- **Decision Tree Analysis:** value of information review; sensitivity analysis; solving with utility for risk aversion
- **Decision Policy:** portfolio optimization to maximize economic value; efficient frontiers; multi-criteria decision-making; risk policy and other forecasting; calculating expected utility and certain equivalent; insurance and hedging; optimizing working interests
- **Implementation:** eliciting a decision maker’s or organization’s preferences for trade-offs among objectives, time value, and risk attitude; decision analysis presentation agendas and formats; special topics from the instructor’s own research and experience

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON, US</td>
<td>3-7 DEC 2018</td>
<td>$4240</td>
</tr>
<tr>
<td>KUALA LUMPUR, MY</td>
<td>15-19 JULY 2019</td>
<td>$5220</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>8-12 OCT 2018</td>
<td>$4990+VAT</td>
</tr>
<tr>
<td></td>
<td>7-11 OCT 2018</td>
<td>$5055+VAT</td>
</tr>
<tr>
<td>TULSA, US</td>
<td>10-14 SEPTEMBER 2018</td>
<td>$4190</td>
</tr>
</tbody>
</table>

plus computer charge
Fundamentals of International Oil and Gas Law – IOG

FOUNDATION 5-DAY

International petroleum transactions occur within a complex legal environment that limits what petroleum companies, host governments and service companies can do, and interprets and enforces many of their promises. Petroleum professionals often lack the broad understanding of what makes up this legal environment and how it can have an impact on their work. This course is designed to give participants a basic understanding of the legal fundamentals that make their international transactions work, including the principles that apply to interpreting and enforcing their agreements, the procedures for resolving their disputes, addressing interpretational issues posed by common contract provisions, and avoiding liability under environmental and bribery laws. The course will teach participants to confidently identify potential legal problems, address them before they become serious, and facilitate the smooth interaction between oil and gas professionals, host government representatives, and their lawyers.

YOU WILL LEARN HOW TO
- Recognize differences between international legal systems and transactions
- Understand legal fundamentals behind international transactions

COURSE CONTENT
- Law governing international petroleum transactions (including significant differences between various national legal systems, and the sources, principles, and limits of international law as applied to petroleum transactions)
- Interpretation and enforcement of treaties and private contracts
- Effects of international trade (and producing country) agreements such as the E.U., NAFTA, Mercosur, and OPEC
- Dispute resolution approaches, including litigation and arbitration
- Procedures under and enforcement of common arbitration provisions
- Legal defenses available to foreign companies, states, and state-owned or connected entities, and recognition and enforcement of judgments and arbitration awards
- Basic legal concepts of ownership of mineral rights (onshore, offshore, and deep sea bed)
- Expropriation and compensation issues
- State-owned entities and deep sea bed
- Indemnification and guaranty issues
- Bribery
- Service contracts
- Transfer and protection of contract provisions
- Interpretational issues for compensation issues
- State-owned entities and state-owned or connected entities, and expropriation
- Arbitration awards
- Basic legal concepts of recognition and enforcement of judgments and arbitration awards
- The legal environment and best use of legal systems
- Understanding how the industry responded
- The tendering process and key documents in the tender package
- Buyer and seller pricing
- The legal environment and best use of legal systems
- Understanding how the industry responded
- The tendering process and key documents in the tender package
- Buyer and seller pricing
- The legal environment and best use of legal systems
- Understanding how the industry responded
- The tendering process and key documents in the tender package
- Buyer and seller pricing
- The legal environment and best use of legal systems
- Understanding how the industry responded
- The tendering process and key documents in the tender package
- Buyer and seller pricing
- The legal environment and best use of legal systems
- Understanding how the industry responded
Inside Procurement in Oil and Gas – SC61

INTERMEDIATE 3-DAY

This course will expand the industry understanding of supply chain professionals and increase their value-added in a global, fast-changing environment. Participants will learn what each industry segment requires from procurement and be given insights to maximize value delivery and increase their contribution. The course includes an online, interactive forum with the instructor, and pre-read materials designed to familiarize course attendees with relevant issues. Attendees will leave better prepared to create and support procurement strategies that meet stakeholder needs, whether for projects or operations support.

DESIGNED FOR
Supply chain professionals with 2-7 years’ experience either inside or outside the oil and gas industry. This course is for anyone who needs a better understanding of procurement value creation in the oil and gas industry and includes buyers, procurement specialists, logistics specialists, business analysts, team leaders, project managers, commodity managers, materials managers, and new sourcing specialists or category managers.

YOU WILL LEARN
• How industry is structured, including host country and strategic relationships
• Business drivers and interface issues to be supported by procurement
• The role of industry economics in dictating procurement practices and in cost management
• Industry global compliance needs and how procurement can add value
• How the industry is modeled in the E&P cost estimating (upstream), midstream, and downstream value chains
• The E&P Asset Management Cycle and Total Cost of Ownership Concepts
• Characteristics of supply markets to oil and gas and the emphasis on market intelligence practices and managing supply risks
• What constitutes effective procurement/supply chain metrics for performance improvement
• Procurement challenges unique to the industry

COURSE CONTENT
Industry overview for procurement including host country and strategic relationships • Key business drivers and interface issues between projects (CAPEX and operations (OPEX) • Procurement’s role in oil and gas value chain management - upstream, midstream, and downstream • E&P asset management cycle and total cost of ownership • Economics of oil and gas that drive procurement value creation • Industry regulatory and contractor safety compliance issues • Industry market intelligence practices in procurement • Industry spend analysis characteristics and strategies • Creating industry category management (sector) strategies • Key procurement and supplier performance metrics • Trends in global sourcing and local content requirements and strategies • Oil and gas law and global contracting risks • Influence of eCommerce and eProcurement initiatives in oil and gas

Cost/Price Analysis and Total Cost Concepts in Supply Management – SC64

INTERMEDIATE 3-DAY

Managing and reducing cost continues to be one of the primary focal points of PSCM in oil and gas today. In many organizations, more than half of the total revenue is spent on goods and services, everything from raw material to overnight mail. Maintaining a competitive position and even survival will depend on the organization’s ability to use all of the continuous improvement strategies that have been developed to reduce cost across the entire supply chain for the life of the product or service. Fundamental to developing and implementing these strategies is knowledge of cost/pricing analysis, value analysis, and total cost of ownership concepts. This course provides the concepts that are essential skill sets in developing and implementing the strategies required to achieve the high levels of cost reductions possible from the supply chain. SC64 is also available as a 5-day in-house course with expanded content.

DESIGNED FOR
Managers and professionals in purchasing, procurement, and contracts as well as those involved in operations, engineering, maintenance, quality, projects, and other company activities that expose them to suppliers and buying activities. This course is designed to expose them to dealings with suppliers for goods, equipment, and services in the oil and gas industry.

YOU WILL LEARN
• Importance of price/cost analysis in continuous improvement programs
• The difference between price and cost analysis
• Methods of price analysis
• How to manage volatile markets
• Use of Producer Price Indexes
• Methods of cost analysis
• Development of “Should Cost”
• Types of TCO models

COURSE CONTENT
Use of price indexes • Cost/pricing analysis • Total cost of ownership • Return-to-tendering as a price analysis tool • Cost estimating relationships • Purchasing savings impact on the bottom line • Developing the spend profile • Sources of spend data • How to perform the ABC analysis • Examples of using pivot tables in Excel for data mining • Continuous improvement skills • Difference between cost and price analysis • Selection tool • Methods of price analysis • Historical analysis • Developing company purchase price index • Methods of cost analysis • Major elements of cost • Requesting supplier cost info • Sources of cost information • What and how important are supplier overheads • How much profit should the supplier make economic • Price adjustment clauses • Total costs of ownership models • How to combine price and performance to obtain TCO
Petroleum Project Management: Principles and Practices – PPM

INTERMEDIATE 5-DAY
Successful petroleum operations need a blend of technology, business savvy, and people skills. If you have a firm grasp of exploration or production technology, boost its impact by applying project management techniques. Running a staged program that integrates reservoir modelling, production estimating, drilling, and facility design is challenging. The tools and techniques covered in this course will help you meet that challenge. Upon completion you will know how to make better decisions in field development that lead to high value and low cost; develop integrated plans to run the overall program; and develop key deliverables for each stage of development to reduce uncertainty. Instruction, guided discussions and in-depth work tasks are used. You may choose a case study from several real-life situations that are based on the instructor’s petroleum experience. Or you may bring the details of one of your own current programs.

DESIGNED FOR
Exploration and production personnel with a background in geoscience, petroleum engineering or drilling should attend. If you are a facilities engineer, we refer you to our Project Management for Engineering and Construction (FPM22) and Project Management for Upstream Field Development (FPM2) courses.

YOU WILL LEARN HOW TO
• Navigate the staged development process
• Manage the interfaces among exploration, drilling and facility groups
• Properly define a scope of work
• Create a realistic, integrated schedule
• Find and reduce petroleum development risks
• Develop a high-performance team
• Capture lessons learned

COURSE CONTENT
The staged development process • Scope definition • Scheduling tools • Manpower resources • Finding and mitigating risks • Learning, continuous improvement, and quality control • Project team management • Petroleum case studies and exercises

Project Management for Engineering and Construction – FPM22

INTERMEDIATE 5-DAY
Many petroleum projects fail to meet their authorized cost, schedule or operability targets. To be successful, today’s project leader needs a comprehensive set of technical, business and interpersonal skills. This course addresses those critical skills. Seasoned instructors tackle the issues and challenges found in concept selection, development planning, facility design, procurement, and construction activities. The specific training received in schedule and cost management, risk mitigation, and the proper use of scarce resources (people and materials) will help you make better decisions. Upon completion you will know how to improve engineering and service discipline work relations, use execution plans to integrate the work, and effectively employ cost and schedule control tools. This course is taught using a combination of instruction, facilitated discussion, and in-depth exercises based on the instructor’s petroleum development successes and failures. The exercises will include both individual and group activities that provide you with a practical application of the principles and practices necessary to keep your project on track.

DESIGNED FOR
Project managers, facility engineers, construction representatives, schedulers, cost controllers, operations personnel, and supply chain specialists including team leaders and others who participate or consult with multiple-discipline development teams. This course is also suitable for business development, finance and land specialists as well as other non-engineering personnel who would benefit from an understanding of oil and gas project management.

YOU WILL LEARN HOW TO
• Define development stages and skillfully execute them
• Develop scopes of work and execution plans
• Utilize project control techniques and earned value analysis
• Develop engineering design checklists to ensure key deliverables for each phase are addressed
• Guide teams through technical reviews and secure needed approvals
• Measure progress during construction

COURSE CONTENT
Project development systems for the oil and gas industry • The stage-gate system • Key knowledge areas for leaders • Leadership • Design engineering • Contracting • Execution planning for design, procurement, and construction • HSE management • Risk identification and mitigation • Organization types and resource deployment • Work breakdown structure • Planning and scheduling • Progress measurement • Cost estimating • Change control • Reviews and approvals

Managing Brownfield Projects – FPM42

INTERMEDIATE 5-DAY
Why is it so difficult to manage projects inside operating facilities? Keeping the scope from growing is a constant battle. Operations priorities and maintenance needs hamper project productivity. To be successful, these projects need strong control, effective liaison, and good interface management. They must be managed differently than greenfield projects. Experienced instructors will share tools and techniques that will help you work in this dynamic, operations-centric project environment. Upon completion you will know how to examine existing documentation and confirm field conditions to improve scope control; frame a project and select the best concept for development; and coordinate the work effectively with operations, maintenance and shipping. Instruction, guided discussion, and in-depth work tasks based on the instructor’s brownfield project management experience are used. Offshore and onshore examples are used. The sharing of experience in this course makes the sessions challenging and insightful.

DESIGNED FOR
This course is for team members that work projects installed in existing facilities. Engineers, operations, and maintenance managers and technicians that need to understand the critical aspects of managing brownfield projects will attend this course. The course provides a comprehensive overview of brownfield project management principles and practices. This course will address how to manage the complexity of existing projects. The sharing of experience in this course makes the sessions challenging and insightful.

YOU WILL LEARN HOW TO
• Deal with competing priorities
• Stage development to manage plant complexity
• Minimize surprise work with due diligence surveys
• Resolve issues using an oversight board
• Tackle unique brownfield constructability issues
• Ensure operations staff buy into objectives

COURSE CONTENT
Brownfield stage gate system • Staffing the team • Communications needs in an operating facility • Challenges in concept choice • Key value improving practices • Due diligence in the existing facility • Quality in engineering, procurement, and construction • Increased brownfield risks • Change management • Contract strategy • Procurement, logistics, and material management • Construction management and HSE • Managing cost/schedule expectations • Performance reporting • Commissioning and startup • Roles and qualities of successful project managers

Managing Project Controls for Contractors and Owners – PC21

INTERMEDIATE 3-Day
This course addresses project controls principles and practices as they relate to fabrication as well as engineering, procurement, and construction contractors. The focus of the course is using project controls effectively to work with the client, maintain project profitability, manage scope, schedule, and deliver a quality and safe project. Upon completion of this course, the participant will understand the critical success factors for cost estimating, scheduling, and progress measurement and be able to utilize these best practices to resolve issues and challenges experienced by EPC contractors on their projects. Participants will understand all the steps necessary to develop an effective EPC project controls plan and staff it to increase the likelihood of success. The course focuses on completing contract requirements during the detailed engineering, procurement and construction phases of project development.

HOW TO USE PROJECT CONTROLS FOR EFFECTIVE DECISION MAKING AND CLIENT MANAGEMENT
This course addresses the special requirements associated with project controls for EPC contractor and fabrication personnel. It is intended for EPC project managers, project engineers, project team members, project controls professionals, planner/schedulers, and project discipline team leads.

YOU WILL LEARN HOW TO
• Understand the critical role that project controls plays in developing a well-planned and executable EPC proposal for both cost and schedule
• Set progress measurement metrics so that the client, contractor management and team members understand the potential to meet project cost and schedule
• Support a successful outcome from Front End Engineering Design through execution with necessary project controls activities (cost, schedule, and earned value management)
• Develop a robust EPC Project Controls Plan and associated staff with roles and responsibilities to support the plan
• Manage project changes when requested by the client
• Forecast the final project cost and the final project completion date using progress measurement or earned value
• Use Monte Carlo simulation to reveal problems with a proposal’s cost and schedule

COURSE CONTENT
In the context of Project Controls, a case study will address: desktop project execution • Cost estimating • How to realize when you have under-bid the project • How to schedule when owner is causing delays • and more...

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON, US</td>
<td>5-9 NOV 2018</td>
<td>$4340</td>
</tr>
<tr>
<td>4-8 NOV 2019</td>
<td>$4425</td>
<td></td>
</tr>
<tr>
<td>KUALA LUMPUR, MY</td>
<td>3-7 DEC 2018</td>
<td>$5170</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>16-20 OCT 2018</td>
<td>$5320</td>
</tr>
</tbody>
</table>

*plus computer charge

2019 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON, US</td>
<td>8-12 JULY 2019</td>
<td>$4730+VAT</td>
</tr>
<tr>
<td>6-12 OCT 2019</td>
<td>$4340</td>
<td></td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>20-24 MAY 2019</td>
<td>$4425</td>
</tr>
<tr>
<td>14-18 OCT 2019</td>
<td>$4425</td>
<td></td>
</tr>
</tbody>
</table>

*plus computer charge

Any course is available inhouse at your location. Contact us today.
Turnaround, Shutdown and Outage Management – TSOM

INTERMEDIATE 3-DAY

Scheduled turnarounds are difficult to manage. Managing a surprise shutdown or outage is like firefighting. Firefighters succeed because they know what strategies work and are highly trained to handle complex, risky situations. Uncertainty and complexity abound when a plant is down. Extra work can appear when equipment is opened and inspected. Integrating project work increases the challenge. Experienced instructors show you how to control scope uncertainty, tackle the complexity of integrating project work, and get the facility restarted. Upon completion you will know how to deploy scarce resources (time, people and materials) to complete work on time and within budget. Utilize best practices in TSO planning, execution and closeout; and manage engineering, maintenance, operations and project interfaces. A blend of instruction, guided discussion, and hands-on exercises using real world examples makes the sessions thought provoking. The exercises will include both single and group activities.

DESIGNED FOR

Managers, supervisors, engineers, schedulers in maintenance, operations, reliability, HSE, procurement and projects should attend. This course also helps business, commercial, finance and other non-technical personnel who want to know more about turnaround, shutdown and outage best practices.

YOU WILL LEARN HOW TO

• Establish targets to ensure support from all facility stakeholders
• Develop a robust resource plan and get the resources you need
• Integrate scopes for both maintenance and projects
• Establish turnaround scope selection criteria early
• Select a computerized work system
• Address key outage constraints and operations interfaces
• Develop a robust contracting plan
• Prepare an execution plan
• Measure and control shutdown progress

COURSE CONTENT

Six-phases of turnaround, outage and shutdown management • Issues and challenges • Quality control • Health, safety and environmental planning • Computerized systems benefits and choices • Integrating the plan • Managing stakeholders and resources • Procurement and contracting • Tracking progress and controlling change

Advanced Project Management – FPM62

SPECIALIZED 5-DAY

Mega projects are complex. A program composed of these super projects is highly complex. For a very large project, addressing linked issues is key to improving the chances of success. In a larger program, these issues interact producing unexpected results. Instructors will explore critical issues in contracting, decision making, and facility design. Interface control and risk reduction are examined. Non-technical problems in stakeholder relations, partner ventures, and approvals, are also tackled. Upon completion you will know how to deal with the program complexity and surprise effects; improve program strategies and deliver the projects on time; address both project and program resource concerns. Instruction, guided discussion, and in-depth work tasks based on the instructor’s petroleum experience are used. The work will include both single and group activities.

DESIGNED FOR

Experienced project and program personnel. Directors, managers, and team members in engineering, procurement and construction will benefit from attending. Project services personnel in the cost, schedule, contracts, procurement and quality functions are encouraged to attend. This advanced course is suitable for business, commercial, and finance and other non-engineers who want a greater awareness of mega project challenges.

YOU WILL LEARN HOW TO

• Improve complex decision making
• Develop contracts for prompt work completion
• Evaluate risks in technology and design
• Address key stakeholders needs
• Establish a process to manage critical interfaces
• Lessen the impact of risks on cost, schedule, and operations
• Navigate approvals challenges to advance your project

COURSE CONTENT

Key aspects of a stage-gate process • Effects of markets on contracting • How governance affects decision making • How limited resources affect technology and design • Advanced methods for influencing stakeholders • Challenges with partners • Critical factors in interface control • Risk methods that preserve mega project value • Managing peer reviews, assists, and approvals

Advanced Project Management II – FPM63

SPECIALIZED 5-DAY

This five-day, advanced level course for experienced project management professionals addresses the fundamental principles and techniques of project management and how to apply them to large international projects. This course will cover all the project phases, with hands-on content directly supported by practical case studies.

DESIGNED FOR

Experienced project managers, project engineers, and construction managers who are working on large international projects or about to start new assignments on international projects. Practical case studies will cover the entire spectrum of a large international project and will include offshore and onshore capital investment.

YOU WILL LEARN

• Why international projects fail and the early warning signs to look for
• The principles of project management that ensure project success
• How to build a strong and effective Project Management Team (PMT)
• How to identify and manage project stakeholders
• How to conduct business and yourself in the international arena
• How to select an effective contracting strategy and the appropriate negotiation style
• The practical approach for global engineering, procurement, logistics, fabrication, construction, and commissioning
• How to conduct project risk management throughout the entire project lifecycle
• How to apply effective leadership and strategy on your international project

COURSE CONTENT

Why projects fail • Project Management principles (PMT, scope, cost, schedule, safety, and quality) • Stakeholders management on international projects • Host country - business and culture contracting • Strategies and negotiations • Global engineering - from concept through detailed design procurement and logistics • Fabrication, construction and commissioning • International project risk management • Leadership and strategy

Advanced Project Management Workshop – APMW

SPECIALIZED 3-DAY

NEW

This course will not follow the traditional lecture-style format; instead it will be an interactive hands-on workshop where the participants will work on several case studies directly related to the selected topics. This workshop will take an EPC contractor perspective while also highlighting how Owner companies (NOCs & IOCs) interact with their EPC contractors to develop and execute their projects. The workshop material covers both onshore and offshore projects. The main objective of this workshop is to present several real-life scenarios of different types of project issues encountered by contractors and work through these issues to show how they should be addressed to arrive at an optimum resolution. This workshop will focus more on practice and less on theory. In addition to the case studies created and provided by PetroSkills, it is recommended that attendees provide a few scenarios from their current or past projects to be used in the workshop as case studies.

DESIGNED FOR

This course is designed for senior project management staff of EPC contractors working on large international projects in the energy industry with a focus on the Middle East Region. It is recommended for experienced project managers, project engineers, project controls managers, construction managers and discipline leads.

YOU WILL LEARN HOW TO

• Allocate contract risk between owner and contractor
• Address terms and conditions at bidding stage
• Handle owner-provided FEED as basis of bid
• Finalize terms and conditions before contract signing, contract administration, and records keeping
• Understand and negotiate liquidated damages applied to project milestones
• Handle change orders, suspension of work by owner or contractor, and contract termination for cause or convenience
• Prepare for dispute resolution and claim by contractor
• Determine when negotiation, mediation, arbitration, and litigation are necessary
• Identify governing laws in the contract
• Determine cost of claims and who is responsible for payment
• Protect yourself from claims by owner against contractor
• Prevent claims where possible
• Identify project risks and determine their impact during engineering, procurement and construction phases
• Apply risk management on a project at the right time
• Identify, assess, and mitigate project risks
• and much more...

COURSE CONTENT

Why projects fail • EPC contracts • Dispute resolution and claims • EPC risk management • Scope changes • Work planning and execution • Working with owner (client) and their PMC

2018-19 Schedule and Tuition (USD)

COURSE CONTENT

See website for dates and locations.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
Managing and Leading Others – MLO

FOUNDATION 3-DAY

Why would any company expend hundreds of thousands of dollars to seek, recruit, and hire the best employees only to have them leave their development and performance? A thorough performance management and leadership practices? Unfortunately, that chance occurs every time an employee is promoted to a leadership, supervisory, or management position. Without training in the principles and practices of effective leadership, managers and supervisors, regardless of technical expertise, can make an error setting off an uncontrolled and disastrous chain reaction. Unless he/she has command of principles and practices that lead to effective supervision, productivity, and teamwork. The first-line and mid-level supervisor has more direct effect on employees and productivity of a work group than any other single entity in the organization. This course increases the confidence and productivity of leaders, managers, and supervisors who may be technical specialists, but have minimal training in the science and art of leading others. Skills in human relations, communication, motivation, and leadership are essential for the supervisor and manager. This interactive learning program will assist you in expanding your options for leading others. You will explore different concepts of management and leadership and how to apply your new skills in real world applications.

DESIGNED FOR
Anyone responsible for leading others in the daily performance of a work, including those who need to manage, coach, and supervise a diverse and dispersed workforce.

YOU WILL LEARN HOW TO
• Apply concepts of leadership and management to real work situations
• Coach and supervise a diverse and dispersed workforce
• Set appropriate goals and manage performance and change to ensure these goals are reached
• Empower your workforce to exceed expectations
• Develop effective communication skills

COURSE CONTENT
The role and function of the leader, supervisor, and manager • Understanding and applying essential management behaviors • Understanding and increasing employee motivation • Understanding and applying leadership concepts • Effectively supervising a diverse workforce • Basic skills in interpersonal communications • Performance management • Coaching • Working with difficult employees • Goal setting • Empowering subordinates • Creating positive and functional thinking about work • Making ongoing change for growth and improvement • Taking personal responsibility • Developing personal plans to improve team effectiveness

2018-19 Schedule and Tuition (USD)
HOUSTON, US 6-8 MAY 2019 $3245
LONDON, UK 7-9 MAY 2018 $3655+VAT

Team Leadership – TLS

FOUNDATION 2-DAY

This program will develop and refine the skills necessary for leading a high performance team. Emphasis is placed on the leader’s role in effectively enhancing team functionality and productivity. Individual communication styles will be assessed and examined to identify the most appropriate communication style to use with your team. This will be an active experience. In addition to receiving individual assessment information, participants will be exposed to team concepts, theories, and skill development through the use of lectures, videos, readings, role plays, case studies, and discussions. This course has been constructed to maximize opportunity to improve both knowledge and practical skills in leading a team and being a team player. (This is a great course to attend immediately following PetroSkills' course titled: Leading and Managing Others.) In addition to this program designed specifically for Team Leaders, PetroSkills has a 2-day course titled: Team Building for Intact Teams.

DESIGNED FOR
Team leaders, supervisors, managers, and others responsible for leading a team and interested in establishing and/or being a part of a highly productive team.

YOU WILL LEARN HOW TO
• Characterize high performance teams
• Gain clarity of goal and worthiness
• Develop a team charter
• Gain commitment
• Build team collaboration and trust
• Establish operational norms
• Recognize stages of team development
• Define team roles and relationships
• Understand system influences
• Promote conditions for effective team building
• Conduct individual and team assessments
• Improve team communications
• Improve team dynamics
• Develop personal plans to improve team effectiveness
• Foster team leadership
• Monitor team progress

COURSE CONTENT
Definition and purpose of teams • Characteristics of a high performance team • Gaining clarity of goal and worthiness • Developing a team charter • Gaining commitment • Team collaboration and trust • Establishing operational norms • Stages of team development • Team roles and relationships • System influences • Conditions for effective team building • Individual and team assessments • Team communications • Group dynamics • Developing a personal team leadership plan • Monitoring team progress • Developing a team leadership action plan

Essential Leadership Skills for Technical Professionals – OMS2

Basic 5-DAY

In the oil and gas industry, skillful and competent leadership is extremely important for safety, productivity, and asset management. The 21st century brings new emphasis on leaders, new focus on safety, information overload, workforce dynamics, asset integrity, and many other concerns which challenge even the most proficient leader/manager. How do we blend these new challenges with tried and true wisdom of success? There are skills to learn that will help you be more effective, with less stress. In this seminar/workshop you will explore your internal drivers and team how to combine them with new skills to lead effectively. This seminar/workshop will include self-assessment, discussion, lecture, readings, role-playing, games, video examples, and creation of participant action plans. This course will help you unleash natural motivation in your team. Your stress level can be lowered by working more effectively and effectively by tapping the emotional intelligence of your team and co-workers.

DESIGNED FOR
Anyone who has new responsibilities to lead a team, supervisors, team leaders, managers, and others interested in becoming a better leader and a contributing team member will greatly benefit from this one-week experience. Many may want to take this seminar/workshop more than once for continuous improvement.

YOU WILL LEARN HOW TO
• Become a more effective leader by overcoming the “tyranny of the urgent” with better time management
• Make better decisions by assessing when to make what kind of decisions
• Help others develop themselves by unleashing their career motivation
• Have more effective communications with technical and non-technical teams by developing the patience to tolerate the “tyranny of the urgent” with better time management
• Make your writing more credible
• Enable you to write better and faster
• Make your writing more credible
• Make you more confident in your writing

COURSE CONTENT
Develop essential technical writing skills to convey a convincing message • Compose clear messages using a structured writing approach • Adapt your writing style to your audience’s needs • Edit at the word level to improve persuasiveness and impact • Write concise and concise memos, letters, summaries, and reports • How to best display visual information • Create informative content using lists, bullet, and short paragraphs as the primary writing mode

Essential Technical Writing Skills – ETWS

Basic 3-DAY

Writing for work-related purposes ought to be brief, clear, informative and, above all, readable. In this practical hands-on course, you gain a solid foundation in technical writing skills. The primary theme for the course is that a writer must think constantly about their readers.” Examples and exercises provide hands-on experience. You may choose to bring a sample of your writing for one-on-one feedback.

DESIGNED FOR
All engineers, managers, IT/computer support staff, team leaders, supervisors, and individuals responsible for writing letters, memos, reports, procedures, test results, and proposals that are clear, concise, and professional.

YOU WILL LEARN HOW TO
• To focus on the reader as the receiver of the information
• To develop quality writing that will:
 • Improve business relationships and communication
 • Enable you to write better and faster
 • Make your writing more credible
 • Make you more confident in your writing

COURSE CONTENT
Develop essential technical writing skills to convey a convincing message • Compose clear messages using a structured writing approach • Adapt your writing style to your audience’s needs • Edit at the word level to improve persuasiveness and impact • Write concise and concise memos, letters, summaries, and reports • How to best display visual information • Create informative content using lists, bullet, and short paragraphs as the primary writing mode

2018-19 Schedule and Tuition (USD)
DENVER, US 16-20 SEPT 2019 $4220
HOUSTON, US 2-6 DEC 2019 $4270
ORLANDO, US 22-26 APRIL 2019 $4225

See website for dates and locations.

Any course is available inhouse at your location. Contact us today.
Negotiation Skills for the Petroleum Industry
– NSPI

BASIC 3-DAY

This course helps you to develop strong interpersonal skills in the art and science of negotiation. You will learn to apply these skills to complex organizational issues and individual needs. The course includes a Negotiating Style Profile self-assessment to determine your preferred negotiation style(s). Various tools and techniques are used to negotiate differences and disagreements to produce positive results. A group workshop conducting a collaborative negotiation, allows attendees to engage in, comment on, and improve their competencies in negotiation skills.

DEIGNED FOR

Petroleum industry personnel who are responsible for negotiating the best possible terms of an agreement in public and private sectors and those negotiating resources and deliverables in projects and programs.

YOU WILL LEARN HOW TO

- Follow a step-by-step method to the structure, techniques, and approaches available to positively influence an effective negotiation
- Adapt negotiation at each stage of the negotiation
- Leverage the power of Best Alternative To A Negotiated Agreement (BATNA), Worst Alternative To a Negotiated Agreement (WATNA), Zone of Possible Agreement (ZOPA), and Walk Away Price (WAP)
- Modify your communication style to achieve desired results
- Respond to tough negotiators
- Select a strategy for your negotiation
- Use the Agreed, Bargain, Control or Delay (ABCD) method
- Practice your negotiation skills in real world practice sessions
- Apply what you’ve learned to plan a negotiation back on the job using the Strengths, Weaknesses, Opportunities, and Threats (SWOT) model

COURSE CONTENT

Learn a step-by-step method to the structure, techniques, and approaches available to positively influence an effective negotiation: Know what behavior to adapt at each stage of the negotiation: Leverage the power of Best Alternative To A Negotiated Agreement (BATNA), Worst Alternative To a Negotiated Agreement (WATNA), and Walk Away Price (WAP): Adjust your communication style to achieve desired results: Deal with tough negotiators: Craft a strategy for your negotiation: Use the Agreed, Bargain, Control or Delay (ABCD) method: Practice your negotiation skills in real world activities: Apply what you’ve learned to plan a negotiation back on the job.

Team Building for Intact Teams – TB

FOUNDATION 2-DAY

This workshop is most effective when attended by an entire team. Team members will develop and refine the skills essential for high performance teams. Emphasis is placed on learning more effective ways to enhance total team functionality and maximum team productivity. Individual communication styles will be assessed and examined to identify the most appropriate uses of team strengths. This will be an active experience. In addition to receiving individual assessment information, participants will be exposed to team concepts, theories, and skill development through the use of a variety of learning techniques. This course has been constructed to maximize opportunity for intact teams to strengthen team performance and team productively.

DEIGNED FOR

Any intact team interested in becoming a stronger and more productive team, such as project teams, leadership teams, cross-functional teams, production teams, quality improvement teams, etc.

YOU WILL LEARN HOW TO

- Characterize high performance teams
- Ensure that your team has clarity of goal and worthiness
- Jointly develop a team charter
- Gain commitment of all members
- Build team collaboration and trust
- Establish and follow group operational norms
- Work through the stages of team development
- Define team roles and relationships
- Understand system influences
- Promote conditions for effective team building
- Conduct individual and team assessments
- Improve team communications
- Improve group dynamics
- Problem solve in teams
- Develop a team plan to improve team effectiveness
- Lead when necessary
- Monitor team progress

COURSE CONTENT

Purpose of teams: Characteristics of a high performance team: Gaining clarity of goal and worthiness: Developing a team charter: Gaining commitment: Team collaboration and trust: Establishing group operational norms: Working through the stages of team development: Effective team roles and relationships: Dealing with system influences: Conditions for effective team building: Individual and team assessments: Team communications: Group dynamics: Problem solving in teams: Developing personal plans to improve team effectiveness: Taking the lead: Effective team meetings: Monitoring team progress

Presentation Skills for the Petroleum Industry – PSPI

FOUNDATION 3-DAY

One of the prime requisites for oil and gas professionals is to be able to deliver presentations in as clear, concise, and well-designed a way as possible. Some industry technical professionals are naturally gifted designer/speaker/presenter, others are not. However, with the proper training and practice any oil and gas professional can learn to make a convincing and persuasive presentation, and do so in a confident, assured, comfortable, and relaxed manner. This course is for individuals who are required, as part of their jobs, to deliver presentations in-house or in public, and who wish to perfect the art and craft of dynamic presentation-making in order to do so.

Participants will participate in a full array of hands-on class exercises to improve presentation-making skills, vocal techniques, social interaction skills, visual aid preparation, etc. Attendees will deliver two presentations in class, both of which will be videotaped to measure improvement, and will discuss their performances in one-on-one private conversations with the instructor at the end of the course. Participants’ progress will also be charted to quantify/show areas in which actual improvement has taken place.

DEIGNED FOR

Industry personnel who wish to acquire the skills and techniques needed to design and deliver technical material clearly, confidently, and convincingly either face-to-face or online.

YOU WILL LEARN HOW TO

- Design and deliver a presentation both in person and on-line
- Keep an audience engaged through use of various delivery methods
- Appropriately use technology and visual aids
- Speak confidently in front of groups

COURSE CONTENT

Communication and the role it plays in presentation-making: Overcoming fears: The similarities and differences between face-to-face and on-line presentations: The four fundamental basics to effective presentation-making: Presence/demeanor/appearance: posture, movement, and physical comfort: Delivery: the voice, gestures/facial expressions, skill in using silence, rhythm, and language: Production: flow/rhythm, skill in using visual aids/technology, skill in using time, skill in listening/observing/questioning, skill in using the venue, connectivity, eye contact, knowledge of audience, and skill in handling audience’ dissatisfaction: Constructing your presentation: design (presentation), design (PowerPoint slides/other visuals), and integration (presentation with visuals)

Making Change Happen: People and Process – MCPP

INTERMEDIATE 2-DAY

Attendees will work in teams to overcome the problems encountered when making changes in their organizations. You will also learn how to develop the ability to effectively handle organizational changes by examining the eight-step change process and understanding your own, and others, needs and responses to each step in the change process. A group workshop allows attendees to engage in, comment on, and improve their competencies in managing change.

YOU WILL LEARN HOW TO

- Provide individual and group behavior exhibited during change
- Improve individual and team dynamics for high performance
- Apply the GROW model to coach and sustain individuals undergoing organizational change
- Design a practical framework for positive engagement with organizational change

COURSE CONTENT

Explore the characteristics of change: Build an integrated change strategy: Embrace change positively using the power of vision: Use people and process to make change happen: Craft an effective measurement process to evaluate change: Facilitate change and overcome resistance through effective communication

See website for dates and locations.

Meeting Management and Facilitation for the Petroleum Industry
– MMF

FOUNDATION 2-DAY

Properly planned and managed, meetings are extremely positive and dynamic ways to exchange ideas, shape policy, resolve problems, effect change, etc. However, when poorly designed and implemented, meetings become virtual breeding grounds for confusion, tension, frustration, boredom, and negativity. During this interactive session, participants will learn how to perfect meeting facilitation skills; master meeting agenda design skills; and polish meeting communication skills-so that they’ll be able to run meetings efficiently, effectively, and smoothly.

YOU WILL LEARN HOW TO

- Run efficient face-to-face and online meetings
- Prepare and implement meeting agendas
- Incorporate meeting facilitation techniques and tools
- Understand meeting roles and responsibilities
- Use meeting facilitation tools
- Master meeting management skills, i.e., use time wisely, avoid topic confusion, handle personal attacks, avoid traffic problems, deal with individual and group communication, and maintain topic (agenda) focus
- Recognize and understand the various roles that a facilitator plays during the course of a meeting

See website for dates and locations.

2018-19 Schedule and Tuition (USD)

2018-19 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Course</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negotiation Skills for the Petroleum Industry</td>
<td>22-24 JULY 2019</td>
<td>$3245</td>
</tr>
</tbody>
</table>

Any course is available inhouse at your location. Contact us today.
Technical Resources Available to You

You Will Receive:
• Complimentary learning and development resources
• Information on new courses and instructors
• Additional public course locations and dates
• Invitations for PetroSkills events and conferences

Simply go to petroskills.com/emailsingup

Overview of the Petroleum Industry – OVP

BASIC 2-DAY

OVP presents an overview of the Petroleum Industry from the point of view of the Asset Life Cycle. Participants will gain an understanding of Exploration, Appraisal, Development and Production phases with particular emphasis being placed on actions they can personally take within each phase to support value creation. Through use of lecture, multimedia and class interactive exercises, a breadth of upstream business acumen will be delivered covering economic, business, geoscience and engineering topics. Discussions will include topics related to all types of resource plays including deepwater, shale oil/gas and enhanced oil recovery technologies.

DESIGNED FOR
Both technical and business oriented professionals who are either new to the upstream oil and gas industry or experienced in one part, but could benefit from a wider point of view. OVP will likewise deliver for non-industry personnel a broad, basic knowledge set of multiple E&P topics. Legal, Financial, Accounting, Management, and Service Company team members will certainly benefit.

YOU WILL LEARN
• The critical importance the industry plays on the world’s economic stage, including discussions of pricing, global reserves and key short/long-term energy trends.
• Business and exploration elements critical to the success of organizations in search of new reserves
• Methods by which new field prospects are evaluated and risk factors assessed (Geology, Geophysics, Petrophysics)
• How exploration rights are acquired (Land themes, International Concessions)
• The basic process for drilling and evaluating an exploration well (Drilling, Petrophysics, Testing)
• Major steps required to appraise a new discovery and estimate its commerciality (Reservoir Engineering)
• Strategies to maximize the value of an oil or gas field asset
• How geology and reservoir management plans are used to guide new field development
• Major steps in the design, construction, and commissioning of facilities
• Basic technical and operational steps required to produce an oil or gas field (Production Engineering)
• Types of opportunities to optimize older fields and increase production

COURSE CONTENT
The business of E&P • Hydrocarbon origin • Exploration - acquisition of exploration/ development rights • Exploration - prospect generation and evaluation • Appraisal - asset characterization and reserve quantification • Development - drilling, completion, and facilities • Produce Asset - recovery optimization strategies

Basic Petroleum Technology Principles – BPT

COURSE CONTENT
E&P industry and asset life cycle • Petroleum geology • Hydrocarbon reservoirs • Rock and fluid properties • Surface/subsurface exploration • Drilling operations and well completions • Production operations

Self-paced, virtual course - start anytime.

FOR MORE INFORMATION, VISIT PETROSKILLS.COM/VIRTUALBPT

2018-19 Schedule and Tuition (USD)

HOUSTON, US 8-12 OCT 2018 $4140
11-15 MAR 2019 $4225
8-12 JUL 2019 $4225
7-11 OCT 2019 $4225
3-7 DEC 2018/19 $4870
18-22 NOV 2019 $5120
18-22 NOV 2019 $5100
5-6 NOV 2018 $4790+VAT
3-7 JUNE 2019 $4935+VAT
4-8 NOV 2019 $4935+VAT
6-10 MAY 2019 $4170

Basic Petroleum Technology – BPT

BASIC 5-DAY

This course provides the participant with an understanding of basic petroleum technology in the context of the Petroleum Value Chain and Asset Management, from exploration to abandonment. Unconventional shale (light oil and gas) and conventional oil and gas are covered. The participant will understand how and when geoscience and engineering professionals use technology to determine and then optimize the economic value of an oil and gas field. This enables the participant to maximize their professional and administrative contribution in their organization. Participants first learn and understand why various global oil and gas production types and plays (unconventional and conventional) have different value. The participant learns which technologies are used by the geoscience and engineering departments during each stage of the asset life cycle and WHY. This E&P lifecycle context accelerates an understanding of basic petroleum technologies and the oil industry. This learning is achieved through guided discussions, videos, animations, and progressive team exercises utilizing “Our Reservoir” and “Our Well” as working models.

DESIGNED FOR
This course is appropriate for those who need to achieve a context and understanding of E&P technologies in conventional and unconventional fields, and/or the role of technical departments in oil and gas operations, and/or be able to understand and use the language of the oilfield.

YOU WILL LEARN
• The E&P Process and how it differs in conventional vs unconventional plays, the role of each technical department and specialist, and the technologies used
• The economic value and properties of reservoir fluids
• Petroleum geology for exploration and production
• About oil and gas reservoirs, both conventional and unconventional, and understand the key differences
• Exploration and appraisal technologies
• Drilling operations for exploration, production, and completion
• Production - well completions and production technology
• Reservoir recovery mechanisms through primary, secondary, and tertiary recovery
• Surface processing of produced fluids

COURSE CONTENT
World hydrocarbon production and consumption review including reserves, benchmarks, and the impact of shale resources • Reservoir fluid properties • Petroleum geology • The petroleum reservoir, conventional and unconventional • Exploration technologies for both conventional and unconventional reservoirs including initial reserves estimation and consequent field development • Drilling and operations • Well completions and workovers • Production operations • Reservoir recovery mechanisms • Surface processing

2018-19 Schedule and Tuition (USD)

HOUSTON, US 8-12 OCT 2018 $4140
11-15 MAR 2019 $4225
7-11 OCT 2019 $4225
3-7 DEC 2018/19 $4970
18-22 NOV 2019 $5120
5-6 NOV 2018 $4790+VAT
3-7 JUNE 2019 $4935+VAT
4-8 NOV 2019 $4935+VAT
6-10 MAY 2019 $4170
MR. STEPHEN ASBURY is the author of six internationally published books on safety and risk management, and a highly experienced HSE practitioner and instructor. He is a Chartered Safety and Health Practitioner (CFIOSH), a Chartered Environmentalist (CEng, FIEMA), and a Professional Member Emeritus of the American Society of Safety Engineers. Awarded the IOSH President’s Distinguished Service award in 2010. Stephen is an experienced instructor (2007-present) on our safety and HSE management programs. He has over 30 years’ risk management experience gained working in leadership organizations, in consultancy, and in the London insurance market, where together they have worked in over 60 countries on six continents. Stephen is a former member of the IOSH Council of Management (1998-2013), and three-times chair of its Professional Committee. Outside of PetroSkills, he is a director of AUISafe Group Limited, a leading international HSE consulting firm. In addition to his consulting work, Stephen is the author of 40 technical papers and journal articles. He was an awarded MBA with Distinction (Leicester, 1995), and is presently completing a PhD (London). His first qualification was in law.

DR. FRANK ASHFORD has over 50 years’ experience in oil and gas reservoir engineering, downhole and surface design and operations, as well as oil and gas conditioning and producing facilities. He has been with PetroSkills since 1988 and has worked extensively in most energy producing countries. He provides instruction fluently in English, Spanish, or Portuguese. He worked with Gulf Research (GR&DC), in Houston, Texas where he developed many reservoir engineering laboratory techniques for the determination of applicable oil/gas/water relative permeability correlations, and choke performance prediction techniques still in application today. Dr. Ashford was a Professor of Petroleum and Natural Gas Engineering at the Central University of Venezuela in Caracas, where he taught various courses in natural gas engineering technology. He was a founder of the Petroleum Engineering Department in INTERSEP, the research institute for PDVSA (Venezuela). He was involved in the initial gas lift optimization operations held in Venezuela, and developed many field, and numerical techniques and corollaries for downhole, and surface choke performance with Otis Engineering (US, and Venezuela), and Compania Shell de Venezuela (CSV). He has authored technical articles published in World Oil, JPT, SPE JIPP, Pub. PDVSA, Pacific Oil World, AAPG, SPELAC, and GPA. He holds a BS in 1961 and MS (1963) in Petroleum Engineering and a PhD in Engineering Sciences (1970) from the University of Oklahoma. He was one of Dr. John M. Campbell’s graduate students from 1962-1963, and participated in the initial data collection and organization for the original John M. Campbell technical textbooks: Gas Conditioning and Processing, Volumes I and II.

DR. OMAR BARKAT is a registered and licensed Professional Engineer and the Executive Director for Upstream Operations with PetroProTech. He has been a training specialist and technical consultant for OGP-PetroSkills since 1997. He has over 28 years of combined industrial and academic experience in the USA, North Africa and Europe. He has been an active international oil and gas consulting engineer since 1993 involved in projects related to surface production operations, upstream facilities, field development, oil and gas production systems performance optimization, equipment selection, petroleum fluids treating and processing and fluids disposal management. From 1987 to 1991, he worked on large offshore projects which included oil sands production technical issues and led research and development projects in areas such as: cement slurries, hydraulic fracturing fluids, propellant transport, emulsions, drilling muds, formation damage, cutting transport, H2S, CO2 corrosion, fluid flow and rheology, drag and poor point reducing agents and petroleum processing. He has had successfully designed and delivered several short courses, seminars and lectures in a variety of oil and gas topics throughout the world. He is a former tenured university full professor in Louisiana and Oklahoma, a current member of several international societies including SPE, AICHE, ACS and ASEE, and a member of the US National Academy of Engineering Honor Society Tau Beta Pi. He is an invited Adjunct Professor of Petroleum Engineering at the University of Tulsa and a member of its Industrial Advisory Board. He is the author of numerous technical publications, the recipient of several professorships, research, teaching and merit awards and listed in the Who’s Who in Science and Engineering. He received a Chemical Engineering Bachelor Diploma from the National Polytechnic University of Algiers, an MS and a PhD from the University of Tulsa.

MR. PAUL M. BARRY is a petroleum engineering consultant specializing in production technology, production operations, and project evaluations. Mr. Barry has over 42 years of international and domestic USA upstream oil and gas production and reservoir engineering and management experience in conventional and unconventional reservoir development. Assignments include working and residing in South America, SE Asia, the Middle East, the North Sea region, and the USA. Earlier industry experience was as field production engineer and field production engineering manager of an onshore oilfield re-development project for PDVSA and partners in Venezuela which required a combination of new development well and well re-completion designs for gas lift, submersible pump, and rod pump artificial lift technology, and frac pack and gravel pack sand control well completions. Previous Indonesia experience was in the design and completion of dual string, multiple selective, underbalanced, tubed conveyed perforated high pressure gas wells, well testing and evaluation and testing for Pertamina and Atlantic Richfield, Hutong, Vietnam Indonesia, and joint venture partners for both oil operations and Bontang LNG gas supply operations. As district reservoir engineer for Pertamina and Arco Indonesia, Mr. Barry was responsible for the plan of development and reserves determination and certification for a 1.3 TCF offshore gasfield. He has also served as field engineer in Saudi Arabia, responsible for a 1.2 MMMBD reservoir pressure support injection well system, injection well water quality assurance, producing well gravel pack completions, internal and external well and flowline corrosion control systems, and, as Mobil Oil field engineer in the Arabian American Oil Company (Arco) Gas Projects department. He has also consulted as a petroleum engineering consultant and technical and commercial interests in both UK and Norwegian North Sea sectors oil and gas producing fields. Mr. Barry has served as an officer in the Jakarta and Dubai SPE sections. He holds a BSCE from the University of Notre Dame and an MSCE from Marquette University, and is a registered Professional Engineer in Colorado, USA.

MR. DON BEESLEY has over 38 years of management, engineering, and operations experience in the oil and gas industry – virtually all on Gulf of Mexico projects, including subsea systems, floating systems and fixed platforms. He has worked for operators Eni, Shell and Texaco, and has held management positions including Project Development Manager and Production Manager. Mr. Beesley has been a member of industry groups Deep Water/Underwater Pipeline Emergencies (DW /UPE) and Subsea Tieback Forum (STBF). He earned his B.S. in Civil Engineering from Auburn University, and he is a registered professional engineer in the states of Texas and Louisiana.

MR. ROBI BENDORF, CPSM, MCIPS, CPM, M.Ed., has over 35 years of purchasing and sales experience, involving domestic and international activities, for a broad range of manufacturing and service businesses. He has extensive experience in consulting and training in purchasing, contracts, re-engineering the supply management process, the management of procurement functions, global sourcing of materials and components, reducing cost of purchased materials and services, and negotiation of complex transactions and contracts. He has held purchasing and contracts management positions in high volume manufacturing, subcontract, job shop and service operations, involving gas turbine manufacturing, power generation, nuclear and fossil power plants, electrical distribution and control, air conditioning equipment and global services. He served as Manager of Customer and Supply Development for the Westhouseing Trading Company. He has given presentations on numerous purchasing and contract management topics to the Institute for Supply Management (ISM/NAPM), major universities, and numerous in-house seminars for industrial and services clients in the US and over 120 public seminars internationally. He was selected to present seminars at the last 17 Institute for Supply Management International Conferences and is the contributor of numerous articles published in Purchasing Today and Inside Supply Management. Robi was selected as ISM’s National Person of the Year in the Global Bothman Scriptures and in Education/Leaning, Robi is a lifetime CPM, and has received ISM’s new certification, the CPISM, and also holds the MCIPS Certification as awarded by CIPS. He has an undergraduate degree from the University of Texas, and a Master’s Degree from Penn State University. His energetic and enthusiastic style, combined with extensive functional experience, makes him an excellent consultant, trainer, and facilitator of change.

MR. JAN BLUM is a seasoned Asset Management professional with 33 years’ experience in the oil, gas, and downstream business sectors. At the moment he is based in Suriname working as Technical Service Manager for a national oil refinery. He worked 30 years with Shell and fulfilled roles as Inspection, Shutdown, and Asst Manager and for 10 years was Training Director for the group Asset Management. He has developed and delivered training all over the world and has broad consultancy experience. Mr. Blum is a Chartered Mechanical Engineer and post graduate in inspection and welding. He has worked and lived in several countries including Saudi Arabia, New Zealand and Suriname.

MR. ROBERT BOMBAARDI has almost 30 years in the oil and gas industry. His expertise is the use of process engineering to optimize operating facilities economics via addressing availability, product recovery and bottleneck issues. As such, Robert has tested, identified, designed, project managed and lead implementation of numerous molecular sieves, NGL recovery, sulfur recovery and debottleneck projects in several countries. He also has had roles in operations, business development and management. Mr. Bombaardi co-authored a paper on molecular sieve dehydration that was selected Best Paper Award at the 2008 Gas Processors Association annual convention and was published in the Oil and Gas Journal. He has a B.Sc. in Chemical Engineering from the University of Alberta and an M.B.A. from Tulane University.

MR. MARK BOTHAMLEY has experience that covers the areas of design, operation, troubleshooting and optimization of offshore and onshore oil and gas production and treating facilities. Prior to joining PetroSkills he was with BP/Amoco for 24 years, in several locations around the world. Mr. Bothamley is a past chairman of the SPE Facilities Subcommittee and a former member of the GPQA Data Book Editorial Review Board. Mr. Bothamley holds a BS in Chemical Engineering from Lakehead University in Thunder Bay, Ontario, Canada, and a Diploma in Natural Gas Technology from the British Columbia Institute of Technology in Vancouver, BC, Canada.

MR. JOHN C. BOURDON has more than 29 years’ experience in hydrocarbon processing and specializes in sulfur recovery processes for the petroleum refining industry. Mr. Bourdon has been involved in the development of several sulfur-related technologies and mechanical innovations, has authored several papers and made presentations worldwide. He has experience with several E&C firms including extensive start-up and troubleshooting for multiple hydrocarbons and other chemicals. Mr. Bourdon has more than 33 years’ experience in the oil and gas industry in South America, Asia, Europe, Canada and the US. He is a registered professional engineer and member of Chi Epsilon Sigma Honor Society. Mr. Bourdon is fluent in English and Spanish. Mr. Bourdon has a BS in Chemical Engineering from the Georgia Institute of Technology and advanced degrees in other fields.

MR. ROBERT E. BOYD, CPA, MBA, CGMA is the Founder and President of Boston Street Advisors, Inc. an investment banking and financial advisory firm in Tulsa, Oklahoma. He is also the founder of Boston Street Capital, a private equity investment firm, and a co-founder and Managing Member of Boston Street Capital Partners, LLC, a capital management company. Mr. Boyd has over thirty years of experience in the fields of capital formation, international finance, investment and portfolio management and investment banking. Prior to forming his own firm, he worked in the accounting department for Warren Petroleum Company, a division of Gulf Oil, and at Peatling & Bates Corporation where he was supervisor of corporate accounting and a senior financial analyst. He has also held positions as Chief Financial Officer and Manager in the manufacturing sector and senior financial analyst for a major international energy company. Mr. Boyd’s international experience includes engagements in Europe, Asia, Canada, South America, and the Middle East. Mr. Boyd has been involved in over 30 corporate ventures and has successfully negotiated several business transactions including the planning and restructuring of over $500 million of corporate debt for a major multi-national energy concern, and has served as exclusive financial advisor for the financing and sale of several mid-market companies across a variety of industries. He has also played key roles in establishing a sales and distribution office in Germany and has advised major energy and service companies in the areas of shareholder value and performance.
measurement. Since founding his own firm, Mr. Boyd has advised management and shareholders on capital acquisition, business development, transaction structuring, valuation services and strategic business planning for mid-market companies. He currently serves on the National Advisory Council of the US Small Business Association and serves on civic boards including the Tulsa University Friends of Finance and the University of Tulsa Student Investment Fund. He has served as chairman of the Capital Exchange Committee of the Wharton Club of New York where he founded the Wharton Investor Resources Exchange, a network of capital investors and companies. Mr. Boyd has been a member of the Graduate Business Association of the University of Tulsa. He has been an adjunct professor of Finance for the University of Tulsa. Mr. Boyd holds a BS in Business Administration from Phillips University with majors in Finance and Accounting and a BA in Economics from the University of Tulsa, graduating with honors. He graduated from the Wharton Advanced Management Program of the Wharton School of the University of Pennsylvania and is a Fellow of the Wharton School. Mr. Boyd is a member of Beta Gamma Sigma, the honor society for collegiate business schools and is a Certified Public Accountant and holds a series 66 securities license.

MR. FORD BRETT is recognized worldwide as a leader in the area of Petroleum Project and Process Management. A registered Professional Engineer and a certified Project Management Professional, Mr. Brett has consulted in over 32 countries on five continents. Formerly, Mr. Brett worked with Amoco Production Company where he specialized in drilling projects in the North Sea, Saudi Arabia, Mexico and Texas. In 1991, he returned to Oklahoma and began working for Burlington Resources in Oklahoma City, where he applied his technical background in Petroleum Engineering to the areas of market analysis, forecasting, gas processing and pipelines. In 1993, he returned to the Wharton School and worked as an instructor for the Engineering Management Program, providing instructor services, coordinated and trained operator assignments in the areas of market analysis, forecasting, gas processing and pipelines. His gas plant experience includes BP's Parnell plant, an integrated gas plant, as well as one of seven reviewers of the 30 Day Study immediately following the BP leaking in the Gulf of Mexico last year. Mr. Brett has been recognized for his leadership with a nomination for the National Medal of Technology, the US Government's highest technology award. In 2010, he advised the US Department of Interior as one of seven reviewers of the 30 Day Study immediately following the BP leaking in the Gulf of Mexico last year. Mr. Brett has also advised the US Government on Section VIII, Div.1 of the Code teaching engineers worldwide on pressure vessels. He has been teaching Biblical History for over 25 years. After completing his mechanical engineering training, he completed an MBA from the University of Texas at Austin. He spent two years in night school studying meteorology at Rice University.

MR. ISKANDER DIYASHEV is a director and a co-founder of Hydrocarbon Research Inc., and Mr. Diyashev served as the consulting firm based in Houston, Texas, focused on drilling, completion and stimulation (www.tenta.com). Prior to that Dr. Diyashev was an officer and a board member with Independent Resource Development Corporation, based in Moscow with operations in Western Siberia Russia. Dr. Diyashev was responsible for the planning of field development, reserves evaluation and addition, planning of exploration activities, as well as engineering and technology. In 2001-2006 Dr. Diyashev served as a Chief Engineer for Sibur, one of the largest integrated oil companies in Russia with a daily production of 700,000 BOPD. During his career. Dr. Diyashev worked in R&D, consulting, and business development at various positions both in Russia and internationally. Prior to his work with Sibur, Dr. Diyashev was one of the key Schlumberger specialists to start the horizontal drilling project in Novoyubilnaya Western Siberia. He holds a PhD in Petroleum Engineering from Texas A&M University, and advanced degrees in Mathematics and Physics from Moscow Institute of Physics and Technology. He has authored 30 technical papers. Dr. Diyashev is a member of the Russian Academy of Natural Sciences, and served on the Board of Directors of the Society of Petroleum Engineers (SPE International), and on the boards of various private & public service and engineering firms in the oil and gas industry. Twice Dr. Diyashev was elected to serve as a Distinguished Lecturer of the SPE, in 2005-2006, and in 2015-17.

MR. WILLIAM (BILL) DOKIANOS has over 35 years experience in engineering, production and pipeline. He is a Professional Engineer in the states of Louisiana and New Mexico, and holds a General and Commercial Contractor License in the State of New Mexico. Over the last 17 years he has been President of Oil & Gas Consultants, Inc. John 3:17. Mr. Dokianos is a major producer of pressure vessels for the refining, natural gas, oil production and petrochemical industries. Since 2003, he has been a lecturer on Section VIII, Div.1 of the Code teaching engineers worldwide on pressure vessels. He consults in the field of upgrading and retrofitting existing pressure vessels for new service. He continues to be a volunteer for the Boy Scouts of America promoting high adventure programs for older scouts. He has been teaching Biblical History for over 25 years. After completing his mechanical engineering training, he completed an MBA from the University of Texas at Austin. He spent two years in night school studying meteorology at Rice University.

MR. ERIC A. FOSTER is a Geoscience Technical Advisor with PetroSkills-DGCI based in Houston. He has 40 years of operations and management experience in the oil and gas industry. Prior to joining PetroSkills, he was with Landmark and responsible for managing a team of geoscience and engineering consultants, representing geological, geophysical and petrophysical software applications and services for global operations. Starting as a geologist in field operations in the US, South America, North Sea, Trinidad and Mexico, he then worked as a training instructor and coordinator for worldwide operations at Core Laboratories in Dallas and subsequently moved to Calgary as Manager, Geological Operations. His background has included all aspects of formation evaluation and the application of software to geological and drilling engineering purposes. Mr. Foster possesses a BS, MSc and PhD (Geology) from Cornell University. He is a Registered Professional Engineer in Wyoming, Colorado, Alberta, and Texas and is a COHEST Safety Certified Supervisor (STS).

MR. BILL FINLEA is a licensed petroleum engineer working for nearly 40 years in the oil and gas industry. Bill has over 30 years of experience in the oil industry in Occidental Petroleum, Unocal Corp., Nato Group (new Cameroon), and currently, SPE Services, Inc. He has a Ph.D. in Physical Chemistry from the University of Chicago, holds 15 patents, and has authored over 25 professional publications. At Unocal, he was responsible for developing the water treatment systems, which were installed in the Gulf of Thailand to remove mercury and arsenic as well as residual oil from the produced water. At Nato Group he developed an effective vertical column flotation vessel design and used CFD to diagnose problems with existing water treatment equipment as well as design new equipment. He was recently awarded a SPE Distinguished Lecturer designation in 2020 and serves on the SPE Steering Committee for their Global Workshop Series on Water Treatment. His field/operational experience in oilfield chemistry, design of process equipment, and the development of process systems has provided him with unique insights into the issues that challenge operators as they work to produce water and treatment complexity and cost escalates over time.

MR. RONALD FREND is a registered engineer, and has extensive engineering management experience in the oil and gas sector. He rose to a senior position in Shell International (Middle East) before opening a
worldwide engineering consultancy based in England. His entire career has
been concerned with practical applications of maintenance and engineering
from a solid business foundation. Ron is experienced in a variety of
maintenance analytical techniques as well as possessing management skills
suitable to a large multi-national corporation working in the oil and gas
industry. He has extensive experience in forensic investigation and expert witnesses for major
tornadoes, non-destructive testing, oil tanker cargo operations, instrumenting and control, resistance and gas welding, vibration analysis,
infrastructure thermography, and ultrasonics. He is a Registered Engineer with an
MSc from Huddersfield University in England as well as being a certified Chief
Engineer (Officer) Engineer in the UK. He is the Technical Director of Facilities
Training for Petskills with special responsibility for Mechanical Engineering training.

MR. RICHARD (RICK) GENGES has over 36 years’ experience in the design, construction, and operation of underground natural gas storage facilities. His experience includes assignments in operations, technical support, engineering management, and project management. Most recently (2010-2012) he served as Senior Project Manager for Cook Inlet Natural Gas Storage Alaska, LLC, and was responsible for overall construction of the first commercial underground gas storage facility in Alaska. From 1982-2010 he worked for ANR Pipeline Company where he held various technical and managerial positions in gas pipeline construction, engineering, and operations. He holds a BSc in Chemical Engineering from the University of Michigan as well as being a certified Chief
Instrumentation and Control (FL), Registered Engineering in the State of Michigan, and Certified as a Senior Completion Advisor for a super major. As part of this role, he
managed a deal of workshops in many countries around the world (with most of them
visited more countries and encountered more cultures than he can remember.

MR. GERALD GUIDROZ started out as a vibration test engineer for the space shuttle main engines. He joined the industry in the petrochemical and gas industry on the North Slope on the production side of the business. He worked as a rotating equipment engineer for several years as well as getting involved with projects involving well pads, pipelines, waterflood, and gas injection before moving over to the pipeline side of the business. He was able to transfer some of his vibration experience into solving complex piping and equipment problems. Mr. Guidroz worked with the Trans-Alaska pipeline on pipeline and tank corrosion monitoring and repairs and worked as a construction engineer at the Valdez Marine terminal. He then transferred to the refinery side of the business working for multiple clients as an engineering consultant. He has been involved with major refinery upgrades, multiple turnarounds and greenfield projects. He has acted as owner’s engineer on projects including a new spill response barge for drilling in the arctic. Mr. Guidroz has been involved with all phases of projects from FEI/Conceptual Design to Detailed Engineering and Construction Management. He has been responsible for the specification and design, welding, pressure vessels, heat exchangers, fire/heat exchangers, pumps, compressors, drivers, valves, pipelines, and stress analysis. Mr. Guidroz has a broad knowledge base from over twenty 28 of experience in the oil and gas business.

MR. ROGER HADDAD, P.E., PMP, is a practicing project manager with Occidental Petroleum and has over 25 years of design and project experience in the Oil and Gas and Chemical Industries. He started his career as a chemical engineer and progressed to design and construction project management. He gained his project management skills while working on fast-track projects in North America where he held various positions in project and portfolio management. For the last 10 years, Roger has been managing large offshore and onshore oil and gas projects in the Middle East. With his experience in engineering, project management, and project controls, he has been managing large project teams and contractors and working with JV partners as well as national oil companies. Roger earned a MS in Structural Engineering and a BS in Civil Engineering from the University of Buffalo, New York. He is currently based in Abu Dhabi, United Arab Emirates.

MR. GERARD HAGEMAN is based in The Hague (The Netherlands), where he settled after 33 years in the downstream oil and gas business (including LNG). He is equipped with thorough knowledge and experience in LNG, gas and refinery operations, start-up, design, process technology, teamworking, change processes, and competency management. Currently, Mr. Hageman is the Global Oil Business Director at The Netherlands as a process engineer, followed by a job as economic analyst for Gulf Oil Chemicals in London, after which he joined Shell for 29 years. During his career with Shell, Mr. Hageman has worked in numerous countries including Malaysia, Thailand, Saudi Arabia, Oman, United Arab Emirates, Nigeria, Angola, Ghana, and Kenya. He has been responsible for Process Engineering, Design, Operation, Start-up, Process Safety (Integrity), Interface Management, Change Processes, Competency Assurance and Training. He holds an MS in Civil Engineering from Twente University in The Netherlands. He is a member of KIVI, i.e. The Royal Dutch Institute of Engineers. Mr. Hageman joined Petskills | John M. Campbell in 2012.

MR. JOSH GILAD, PE., has 40 years of domestic and international experience in the engineering, analysis, inspection, troubleshooting, forensic investigation and expert witness for many liquid bulk terminals for oil (crude, products) and gas (LNG, LPG), cargo handling and storage facilities, prime movers, piping and pipelines. His experience includes pipeline flow and hydraulic transient analysis, pipe stress analysis, pipeline on-bottom stability, pipeline integrity & fitness for service assessment. Throughout his years with Braun & Root (now HBR), Han-Padron Associates (now CH2M-Hill), and as an independent consultant, Mr. Gilad has been involved in the design and installation of numerous single point mooring (SMP) systems and other offshore petroleum terminals, fixed-bored and offshore cargo transport systems, oil and gas pipelines, Pipeline End Manifolds (PEMs), pig launching/ recovery systems, and more. He holds a BS in Mechanical Engineering from the Technion, Haifa and is a registered Professional Engineer in the States of TX, NY and CA. He is one of the original authors of the California State MTOEMS, and presently a member of PIANC working group, W153, that is developing recommendations for design of marine terminals.

MR. MALCOLM HARRISON graduated in Chemical Engineering in 1981 and completed an MBA in 1995. He has worked mostly in the areas of oil and gas, cryogenics and gas monetization. Mr. Harrison has worked for BP, Foster Wheeler and BG. He was Director of Process Engineering for Foster Wheeler and, most recently, was BG’s Chief Process Engineer. He has travelled a lot, worked on all the continents except Antarctica, visited more countries and encountered more cultures than he can remember. While his foundations in process engineering, the MBA sparked an interest in corporate strategy, in changing organizations and building high performing teams.

Mr. Ron Hinn is the EVP for Sales and Member Engagement for PetroSkills. He is a people oriented manager, possessing strong leadership and communication skills. A registered professional engineer, Ron’s 39-year career has spanned numerous roles including staff engineering, engineering supervision, corporate knowledge management and professional staffing and competency development. Ron is an active supporter of global engineering accreditation activities, having served in multiple roles for APE to up and including Executive Committee of the APE Board. Ron received a BS degree from the University of Tulsa in petroleum engineering.

Dr. Frank Hopf has 35 years of experience in engineering and management of energy transportation and distribution facilities for crude oil, refined products, petrochemicals and LNG. He also has seven years pursuing a PhD in geography where he conducted research in engineering geography, GIS and remote sensing, hazard analysis, and the relationship of science and public policy development. During his 31 years with Shell Oil Company and affiliated companies, he managed engineering, construction and operations for pipelines and terminals in the Gulf of Mexico, Texas, Wyoming, Montana, California, New Mexico, Mississippi, Louisiana and Washington. He also served on the board of directors of several major joint interest pipeline systems. Mr. Hopf concluded his career with Shell in the implementation of an SAP based supply chain management system and then continued as a consultant to organizations providing asset and risk management services to pursue a PhD in geography, completing his dissertation on the risk of levee failures in the Sacramento-San Joaquin River Delta and the impacts of the assessment of risk on public policy formation. He also studied engineering geology and GIS in natural hazard and risk analysis and remote sensing applications to the energy transportation and distribution industries. He has taught large courses (excess of 300 students) at Texas A&M University. Mr. Hopf was awarded his PhD in December of 2011. He is a registered Civil Engineer in Texas.

Mr. Aaron Horn is the founder of Eos Resouces, a training company aimed at providing leadership and technical training to multiple industries. Prior to this he worked at KBR, Han-Padron Associates (now CH2M-Hill), and as an independent consultant, Mr. Gilad has been involved in the design and installation of numerous single point mooring (SMP) systems and other offshore petroleum terminals, fixed-bored and offshore cargo transport systems, oil and gas pipelines, Pipeline End Manifolds (PEMs), pig launching/recovery systems, and more. He holds a BS in Mechanical Engineering from the Technion, Haifa and is a registered Professional Engineer in the States of TX, NY and CA. He is one of the original authors of the California State MTOEMS, and presently a member of PIANC working group, W153, that is developing recommendations for design of marine terminals.

Dr. Rodney Jacobs is recognized as a worldwide leader in the field of Instrumentation, Automation and Process Control. He has been involved in instrumentation for the last 35 years, and has presented a great deal of courses and seminars around the world (with most of them being in countries that have an interest in the oil and gas industries). Apart from in-house and public workshops, he has also presented hundreds of internet-based (e-learning) sessions, primarily related to process control and safety. His main area of focus includes PLCs, SCADA, DCS, loop tuning, instrumentation and other areas related to the control of processes. Although his primary focus has always been instrumentation, he does have qualifications in electrical heavy current aspects, and has lectured this at university level. In addition to presenting international seminars, he is also actively involved as a consulting engineer, in his area of expertise. He is a past chairperson of the Instrumentation Group (IP) of SICPAC and of AIMP, in the Middle East and the subcontinent of instrumentation, in South Africa. Apart from a Doctorate in Engineering, Light Current, he also has an Honors degree in Psychology, and is internationally certified in training and assessment.

Mr. Frank Jarrett has over 40 years of experience, primarily in the natural gas processing industry. Responsibilities have included project design, construction, supervision, and conceptual and detailed process design, extensive use of computer simulation tools, computer program development and...
MR. BILL KEMP has 38 years of oil and gas processing experience. He has worked in the upstream, midstream, and downstream sectors. Currently he leads the downstream segment of the software solutions strategy at The Woodlands, TX. He has extensive experience working with the major oil companies and has helped to develop customized software solutions for major campaigns such as CO2 pipeline compression, process and utility systems, and data analytics. He holds a B.S. in Chemical Engineering from the University of Texas at Austin.

MR. THOM KRAMER is a safety consultant and structural engineer with 22 years of experience. As a registered professional engineer and certified safety professional, he has spent much of his career consulting with clients to reduce risk for workers at heights. He specializes in the design of fall protection systems, as well as fall protection program development. Mr. Kramer is Vice Chair of the ANSI Z359 Committee and chairs two subcommittees (ANSI Z359.1 and 17). He also serves as the president of the International Society for Fall Protection. He is widely considered as a thought leader in the fall protection industry having given more than 100 technical sessions and workshops on the topic. For his contributions to the safety profession, he received the Edgar Monsanto Queeny Safety Professional of the Year award in 2016.

MR. DALE KRAUS has over 30 years of progressive responsibility from staff to management positions within the Upstream Oil and Gas Industry. Mr. Kraus has obtained a sound basis in Facility/Process Engineering with an emphasis on Plant and Field Operations in Oil and Gas Production, both sweet and sour. He is also the President of D. Kraus Oil & Gas Consulting Corp., a member of APPEA and holds a BS in Chemical Engineering from the University of Saskatchewan. He currently resides by the lake in Wakau, Saskatchewan.

MR. JAMES LANGER is a registered professional chemical engineer in Texas and California. Jim worked for Hess as a Senior Project Engineering Advisor for 8 years. He is retired from Hess having worked 28 years there. Jim has over 8 years of direct field experience with Shell/Shell Global Solutions. He has had a global role for the past 20 years and had experience in offshore/onshore, shallow water/ deepwater, heavy oil /light oil, water treating, and natural gas processing. He has been a project manager for several large projects through all phases. He frequently travels the globe assisting operations with process issues, and showing them how to unlock additional barrels through the application of production optimization. This has delivered over $2 billion in value to Hess and the team.

Mr. Langer's work has been focused on the project and operations support roles. He has worked for M&O and various offshore and facilities projects. His project took 8 years and is located on Pacific Coast Highway in Huntington Beach California. Jim graduated with a BS in Chemical Engineering from UCLA and has an MBA from Pepperdine.

MR. PERRY LOVELACE, CMP®, specializes in Maintenance and Project Management, Leadership and Competency-Based Training and has over 25 years’ experience in industrial training and consulting. His work in complex environments has led to his involvement in several major projects. His work with M&O, its participative leadership seminars have provided team-building skills to hundreds of supervisors and team leaders. He has dedicated his career to providing high quality learning experiences, keeping in tune with the changing economic and technological environment, especially as applied to long-term facilities and organizational development. He has assisted many organizations through on-site consultation and training. Clients include industrial and utility organizations of different types and sizes around the world. A certified Maintenance and Reliability Professional, CMP®, Perry is a member of the Society of Petroleum Engineers, Mr. Lovelace also holds a BS in Science Education and an MS in Botany from the University of Oklahoma, with pre-doctoral studies in Plant Ecology at the University of California.

MR. PETE LUAN has over 25 years of international upstream project management experience. He has also consulted for the past 10 years helping energy companies improve their management of capital projects. He has an extensive track record of helping E&P companies improve their capital project performance. He has been particularly successful with those clients who are faced with large capital projects and require a step-change in organizational capability. Luan is a former manager of major projects and a member of the Senior Executive Committee of an oil company who spent more than 30 years helping his company develop and implement strategic direction and management for large projects. His work has included an extensive track record of helping E&P companies improve their capital project management. He has extensive knowledge of IOCs and NOCs and multinational operations providing leadership and directions for more than (30) years and has been involved in a number of major international projects. Mr. Luan has a BSEE from the University of Technology in The Netherlands. He has over 30 years of experience in the upstream oil and gas industry and has worked in North America, Europe, Asia, Africa, and the Middle East.

MR. KEN LUNSFORD is the Project Management Discipline Manager for PetroSkills. He has more than 38 years’ experience in engineering and management of oil, gas, chemicals and plastics processing. During his 32 years with ConocoPhillips, he led development teams on projects in the United States, Norway, Qatar, and United Arab Emirates. He is a registered professional engineer and certified project manager. His expertise includes the design and implementation of complex offshore structures and engineered systems, including risers, pipelines, jackets, and topsides for deepwater oil and gas developments. He has extensive experience in the management of major capital projects and has held various key positions in the upstream oil and gas industry, including Project Engineering Manager, Project Director, and Project Manager for major offshore projects. He received a degree in Chemical Engineering from the University of Texas at Austin.

MR. STEPHEN JEWELL is an independent oil and gas consultant with 30 years’ experience in the upstream sector. He was previously the Managing Director and co-founder of Xodus Subsurface Ltd., a leading global provider of subsurface consulting services. He has held a variety of roles in the oil and gas industry, including Managing Director of its North Sea Operations Base. He received a BEng (Honors) in Chemical Engineering from the University of Sydney in 1974.

MR. ROGELIO JENTZ has 36 years of oil and gas processing experience. His work has focused on crude oil and gas production, processing, and production, including design and testing of low point glycol dehydration units, analysis of flare and relief systems using dynamic simulation programs, retrofitting gas/liquid separators to increase capacity and eliminate entrainment, and upgrading oil脱hydrator. Mr. Jentz has worked for both operating and engineering contracting companies. He is a Registered Professional Engineer in Alaska and Washington. Mr. Jentz received his BS in Chemical Engineering from California State University Long Beach in 1974.

MR. STEPHEN JEWELL is an independent oil and gas consultant and advisor with 30 years’ experience in the upstream sector. He was previously the Managing Director and co-founder of Xodus Subsurface Ltd., a leading global provider of subsurface consulting services. He has held a variety of roles in the oil and gas industry, including Managing Director of its North Sea Operations Base. He received a BEng (Honors) in Chemical Engineering from the University of Sydney in 1974.

MR. ROGER JAFFE is a petroleum consultant from Long Beach, California. Mr. Jaffe has over 25 years of experience in the oil and gas industry. He is the President and CEO of RJA Worldwide, a consulting company specializing in oilfield market research and new technologies. He has extensive experience working with energy companies to improve their management of capital projects. He has an extensive track record of helping E&P companies improve their capital project management. He has extensive knowledge of IOCs and NOCs and multinational operations providing leadership and directions for more than (30) years and has been involved in a number of major international projects. Mr. Jaffe received a BSEE from the University of Technology in The Netherlands.

Mr. JAFFE has 38 years of oil and gas processing experience. He has worked in the upstream, midstream, and downstream sectors. Currently, he leads the downstream segment of the software solutions strategy at The Woodlands, TX. He has extensive experience working with the major oil companies and has helped to develop customized software solutions for major campaigns such as CO2 pipeline compression, process and utility systems, and data analytics. He holds a B.S. in Chemical Engineering from the University of Texas at Austin.
well stimulation by acidizing and fracturing. He worked in the area of surface well logging, and was one of the co-developers of GOMA (Qualitative Gas Measurement) and QFT (Qualitative Flow Technique). Prior to Getty, he was employed by GTE Labs in Waltham, Massachusetts, where he worked primarily in the area of parameter estimation problems in telecommunications.

He was the Chairman of the Completion Engineering Association in 1991-1992, after being Vice Chairman in 1989-1990. He was a member of the research team that received the Special Meritorious Award for Engineering Innovation from Petroleum Engineer International in 1989. He was a member of the team that founded the Heard Newspapers Energy Award for Technology in 1988. He has twice received Texaco’s Corporate Technology Innovation Award and holds numerous patents.

He held a post-doctoral appointment in Chemistry at Brown University, and subsequently taught engineering there for several more years. He received a BS in Chemistry and Mathematics from Central Oklahoma University, and a PhD in Physical Chemistry from Arizona State University.

MR. YUV MEHRA, an inventor (31 US Patents) and a licensed professional engineer (California and Texas), has over 40 years of practical, hands-on process engineering experience related to the processing of hydrocarbons from the standpoints of major operator/owner, as well as E&C service provider. He held the post of Engineering Manager at Taylor SouthWest Laboratories where he was responsible for the design, construction, and start up of a variety of hydrocarbon processing plants worldwide. Mr. Mehra holds a BS in Chemical Engineering from the University of Texas, and a MBA from Rice University.

MR. JOHN MORGAN is based in Denver, Colorado, and Chairman Emeritus of PetroSkills with over 40 years’ experience in the design, startup and optimization of petroleum production and processing systems. He has served as advisor and consultant for both major operators and E&C service providers. Mr. Morgan holds a BSc (74), an MS (75) and a PhD (78) in Chemical Engineering from the University of Texas, and also holds a PhD in Chemical Engineering from the University of Colorado.

MR. DR. MAHMOOD MOSHFEHGIAN is a Senior Technical Advisor and Senior Instructor for PetroSkills. He is the author of most of the manuals and technical training materials for PetroSkills. He has over 35 years experience in the fields of engineering, technology, economics, industrial management and education. He is a member of the Advisory Board of Petroleum Engineering International, the International Committee of GPA/GPSA, the Advisory Committee of the Laurance Reid Gas Conditioning Conference, and an active senior member of the Editorial Board for the Gulf Journal of Engineering. Mr. Moshfeghian has presented invited papers at international conferences. He is a fellow of the American Society for Engineering Education (ASEE) and an active senior member of the Editorial Board for the Gulf Journal of Engineering. He holds a BS in geophysics from Michigan State University, and an MBA from Rice University.

MR. DR. CARLOS PALACIOS is a Senior Technical Advisor and Senior Instructor for PetroSkills. He has over 20 years experience as a petroleum engineer working for major oil companies in the upstream oil and gas industry and 6 years in petrochemical process engineering. He has a background in the fields of reservoir engineering, surfactant polymer flooding, reservoir engineering, carbon dioxide flooding, and surfactant recovery. He has presented invited papers at conferences in the UK, Europe, Asia, and Latin America. He holds a BSc (86) in Chemical Engineering from the University of Texas, and a PhD in Chemical Engineering from the University of Oklahoma.

Mr. Moshfeghian has presented invited papers at international conferences. He has authored a number of technical papers on thermodynamic properties and process engineering. Dr. Moshfeghian has presented invited papers at international conferences. He has been a member of the Editorial Board for the International Journal of Oil, Gas, and Coal Technology. He holds a BS (74), an MS (75) and a PhD (78) in Chemical Engineering all from Oklahoma State University.

MR. MANICKAVASAN [MANICKAM] S. NADAR is a consultant Principal Petroleum Engineer with 27 years experience in the upstream oil and gas industry and 6 years in petrochemical process operations with Texaco. He has a MS and a PhD in Chemical Engineering from the University of Texas, and a BS in Chemical Engineering from the University of India.

Mr. Nadar has over 21 years of experience in planning, design, engineering, management, and commissioning for a wide range of natural gas installations including wellhead controls, gathering systems, compressor stations, processing plants, metering facilities, and truck loading stations for projects around the globe. In the course of his career he has assisted the university as a drafting instructor, engineering consultant, and led an E&C technical team at Encasa Oil & Gas (USA) to execute capital projects and develop technical and safety standards. Recently, Mr. Pingetno was the Vice President of Engineering and E&C Manager at GWD Design & Engineering based in Denver, Colorado, with a field services office in North Dakota. STV Energy Services has since acquired GWD Engineering and Mr. Pingetno continues to work with the company. He received his Chemical Engineering degree from the University of Nice and his MSc in Chemical Engineering from the University of Pennsylvania. He has giving many seminars, and training courses for various companies.

Mr. William E. Busby is the Director of PetroSkills Data & Consulting Services where he maintains close relationships with many large oil and gas companies and government agencies.

Mr. William G. Ott is an independent petroleum consultant and the founder of Well Completion Technology, an international engineering consulting and petroleum industry training firm established in 1986. Before consulting and teaching, he was division engineer for Mobil and Texaco, and a reservoir engineering consultant for Halliburton in Oklahoma. He works regularly with and on reservoir engineers around the world, and has helped them achieve substantial increase in production, operation efficiency and cost savings.

Recently he has helped companies to implement real-time surveillance and optimization strategies that allow field operators to use their time more effectively and optimize their fields.

Mr. Ott holds a BSc degree in Chemical Engineering from Madison University, India and a degree in Chemical Engineering from Institution of Engineers (India).

With several SPE papers and test book publications to his credit, he has conducted many workshops, training seminars and short courses for SPE and other organizations.

Mr. Robert John (Bob) Nichol is President of PetroRob Consulting Limited, located in Sherwood Park, Alberta, Canada. He has over 35 years’ experience in a broad range of petroleum engineering roles including field operations, reservoir engineering, and engineering research. Bob is a member of the Brunton BSC in Electrical Engineering, and a PhD in Petroleum Engineering, all from the University of Alberta. He is currently employed at the Alberta Government, Department of Energy in Edmonton.

Mr. Tim Nieman has 30 years of experience as a risk analysis and operations specialist. He has professional experience in several areas in leading and conducting projects of various sizes and scope. He has done a variety of papers appearing in AAPG, SEG, and other technical societies in the energy and environmental sectors, and 10 years as a practicing petroleum geophysicist. His background includes work in data analysis, risk analysis, business modeling, financial forecasting, strategic planning, and project management.

Mr. Nieman has also taught numerous training seminars in decision analysis, economics and quantitative modeling. He has a BS in geology and an MS in geophysics from Michigan State University, and an MBA from Rice University.

Mr. Ronnie Norvell was Director of Instructional Design and Quality at PetroSkills 2009-2012. Prior to joining PetroSkills, Ronnie served as a Director of the Management and Engineering Development Group at the Saudi Aramco's General Supervisor for the Upstream Process Engineering Division. During 2003-2004, Mr. Mehra was the Chairman of the Completion Engineering Division. He is a member of the team that received the Hearst Newspapers Energy Award for Engineering Innovation from Petroleum Engineer International in 1999. He is the author of numerous technical papers on thermodynamic properties and process engineering. Dr. Moshfeghian was Professor of Chemical Engineering at Shiraz University. Dr. Moshfeghian holds a BS in Chemical Engineering from Iran, an MS in Chemical Engineering from the University of Texas, and a PhD in Chemical Engineering from the University of California.

Mr. Moshfeghian has presented invited papers at international conferences. He has authored a paper for ASME/ETCE 2000 on value of well test accuracy, presenting his results on the use of artificial neural networks for the prediction of productivity and achieving one of his highest honors, the “Torch” award. The Dallas Chapter of ASTE recognized him as the “Professional of the Year” in 1999 and his alma mater, Texas A&M University at Commerce, selected him as a “Distinguished Alumnus” in 1996.

Mr. Dr. Phil Notz is an offshore onshore oilfield consultant for flow assurance issues. He worked as a chemical engineer for DuPont from 1986 to 1971, a reservoir engineer for Mobil in the North Sea and Chevron from 1978 to 2002. He worked for offshore engineering and construction firms, Doris Inc. (2002-2004) and Technip USA (2004-2006) as a flow assurance manager. While at GulfTexaco, Dr. Notz taught courses in surfactants and foams, and carbon dioxide injection via reservoir fluid properties and fluid assurance to operators in the UK, Ecuador and Saudi Arabia. He was Texaco’s representative on the GPA research committee, the Colorado School of Mines Gas Hydrates Consortium and the Colorado Flow Assurance, and Inhibition Modeling and Processing Modeling and Optimization groups in the University of Wisconsin in Chemical Engineering minor) and a PhD from Michigan State University in Analytical Chemistry.

Mr. William K. Ott is an independent petroleum consultant and the founder of Well Completion Technology, an international engineering consulting and petroleum industry training firm established in 1986. Before consulting and teaching, he was division engineer for Mobil and Texaco, and a reservoir engineering consultant for Halliburton in Oklahoma. He works regularly with and on reservoir engineers around the world, and has helped them achieve substantial increase in production, operation efficiency and cost savings.

Recently he has helped companies to implement real-time surveillance and optimization strategies that allow field operators to use their time more effectively and optimize their fields.

Mr. Ott holds a BSc degree in Chemical Engineering from Madison University, India and a degree in Chemical Engineering from Institution of Engineers (India).
DR. JAY RAJANI worked in Amsterdam, The Hague and London for Royal Dutch Shell Group of Companies for 33 years. He started his career in the Shell Research Center in Amsterdam where he was involved in the development of refinery furnaces/ammonia. He later moved to Separation Technology. He worked on the development of conventional as well as membrane based gas-liquid and liquid-liquid separators. From 1987 to 2005, he worked in the Gas Liquids Separation and Separation Engineering Department as a Principal Technologist, providing technical and operational excellence to all gas plants and LNG plants that were operated or advised by Shell. His last position (2000 to 2010) was as a Lead Process Engineer with Gargas 3 & LNG Project (first with CPC contractor in Japan and then in Ras Laffan in Qatar). The last ten years of his involvement was in the construction, commissioning and start-up of the 7.8 mtpy LNG trains. From 2011 to 2014 Jay worked with SBM Oshthorne in the Netherlands on the development of gas treating modules for FPSO and FLNG. Jay is now an independent consultant and instructor in PetroSkills, with degrees from the University of London and a Diploma in Management Studies from the University of Coventry.

DR. CLIFF REDUS is an independent petroleum engineering consultant who specializes in production system operation and subsurface flow assurance. Prior to starting his consulting business, he was an Associate Professor of Petroleum Engineering at the University of Tulsa. He has 35 years of petroleum industry experience, both in production research and field operations in the area of multiphase flow. His primary areas of interest are multiphase flow in well flows, lines and production equipment, multiphase meters and pumps, computational fluid mechanics, advance separation technology, multiphase test equipment development, electrical fluid flow lines and wells. He was in a supervisory capacity in production related industrial research for the last 10 years with Texaco’s Upstream Technology Department in Houston Texas, with the last four years as Director of Texaco’s offshore gas field assurance. Prior to starting his consulting business, he was an Associate Professor of Petroleum Engineering at the University of Tulsa. He is a hands-on scientific, technology and business professional with 25 years of experience in the areas of reservoir engineering and corporate development. He specializes in reservoir management, production optimization, drilling, operations, completion and workover capabilities, personnel development, communications and multi-discipline team building. His previous experience includes 7 years as an engineering manager and project manager with Exxon & 8 years as Security Advisor with BP. He is an independent drilling fund company; 8 years as President of Rosseau Resources, a privately-owned international integrated oil company; and 7 years as President/Vice Chair of Global Offshore, a Houston based international exploration company. He has authored articles and manuals on various phases of petroleum engineering and personnel management. He is a member of API, SPE, IPA, and TIPRO, is a Tau Beta Pi Fellow, and has various outstanding lecture awards. He received a BS in Engineering Science and an MS in Petroleum Engineering from the University of Texas at Austin.

MR. JOHN SCHUYLER, CAM, CCE, CMA, DMC, CPIM, PMP, and PE, is a decision analyst, evaluation engineer, and investor. He founded his consulting practice, Decision Precision, in 1988. He has over 30 years of experience in analysis, consulting, training and management, primarily in the energy industry. He has written and published numerous feasibility analysis reports, corporate planning, and evaluation software. He has presented over 290 courses in 34 countries since 1989. He was vice president and petroleum engineer with Security Pacific National Bank, planning and evaluating the bank’s natural gas investment. He was employed by Global Offshore Engineering Systems for Cities Services Petrochemicals Division, and senior management consultant with a national accounting firm. He is a member of eight professional organizations and is an author and speaker on modern analysis practices. He is the revision author of Decision Analysis for Petroleum Engineers, published by PennWell Publishing Company in 2002. He served on the Board of Directors of the Project Evaluation and Decision Technology Association, Projects, 2nd Ed., and has written over 40 articles, papers and handbook chapters. He received BS and MS degrees in mineral-engineering physics from the Colorado School of Mines and an MBA from the University of Texas at Austin.

MR. STEPHEN SCOTT is a Chemical Engineer by training, with over 32 years of experience in the design, licensing and commercialization of processes for the production of refinery products. He was the Practice Leader for Process Technology at Chevron. He is a member of the Institution of Chemical Engineers and the Energy Institute, and is qualified as an API Certified Tank Inspector (API 653). On leaving full time employment, Steve joined ICI, and was involved as a key player in the development of improved separation and processing technologies for petrochemical and industrial manufacturing plants. In 1985, Steve became a member of the Institute of Petroleum team charged with the production of its ‘Tank Cleaning Safety Code’, which has become the definitive document worldwide. In 2005, Steve returned to the same role with IChemE as the Editor for Process Services specializing in the preparation for inspection of large diameter black oil storage tanks and the subsequent processing of the resultant hydrocarbon waste for oil recovery, recycling, and waste minimization. Steve has extensive project management, software implementation, and training experience in a wide range of industries, and has authored over 20 technical papers for international conferences, provided training for Shell in various countries, and has taught Gas Processing at the University of Pennsylvania’s Energy Institute. During his time at IChemE Steve has presented over 30 paper at conferences across the world, from the Universities of Saskatchewan (76) and Minnesota (78) respectively. He is a registered professional engineer in Alberta.

MR. KENNETH (KEN) SOURISSEAU has 34 years experience with Shell. Assignments have been in front end development, project design, project engineering, operations technical support, and operations management primarily in the areas of sour gas and in situ gas production. He has worked together with Atlantic Refining in Abu Dhabi, the Netherlands and the Netherlands. He has authored a number of technical papers for international conferences, provided training for Shell in numerous countries, and has taught Gas Processing at the University of Pennsylvania’s Energy Institute. During this time, he served on the Board of Directors for the GPA. In addition, he serves on the GPA Engineering Data Book Editorial Review Board, and prior to this role, served on the GPA Technical Research Committee, Sub-Group 2, for over 11 years. He has published seven technical papers at international conferences, served as project coordinator for GPA research report 221, and is a coinventor on two technology patents in the gas processing industry.

MR. DAVID TENHORO, CPIM, has been consulting and teaching APICS (The Association for Operations Management) CPIM certification courses since 2005. He has taught in many different industries including, but not limited to: Petroleum, Petrochemicals, Manufacturing, and Aerospace. Companies include BASF, Natural Oilwell Varco, Halliburton, ExxonMobil Chemical and Cameron. David brings a well-rounded package of industry experience to PetroSkills/PMC. He has held positions in Inventory Control, Manufacturing Management, Strategic Sourcing and Transportation/Distribution Management. He also has experience in Finance and Product Development. David received his undergraduate degree in Chemistry from Hope College in Holland, Michigan and an MBA in Supply Chain Management from the University of Arizona. He is a member of API Chapter of APICS and served two terms on the Board of Directors as Treasurer.

MR. BUCK TITSWORTH has over 40 years’ experience with major international operating and service companies in worldwide oil and gas production/process engineering, project execution, and...
MR. PAUL VERRILL has over 35 years’ experience working in the chemical, petrochemicals, hydrocarbon processing and power sectors. He has held a number of technical and senior management positions including Mechanical and Piping Designer, Machinery Engineer, Project Manager, Engineering and Maintenance Manager and other Senior Plant and Business Management roles. He has worked for a number of international operating and engineering companies including ICI, Rolls Royce and Enron E & C. His experience includes piping and mechanical equipment design, rotating equipment engineering, project management, gas processing project development including FEED study management and operations and turnaround management. For the previous 3 years Mr. Verrill has been working in the senior management team of an 800mmscfd gas processing facility which has been developing the onshore assets for a new UK gas field. In 2011 Mr. Verrill started working with JM Campbell as an instructor in addition to providing project development and asset management services through his own consultancy company. Mr. Verrill is based in Yorkshire, England and graduated with a BEng degree in Mechanical Engineering from Newcastle University and is a Chartered Member of the Institute of Mechanical Engineers.

MR. COLIN WATSON has over 36 years’ broad experience in petrochemicals, primarily in engineering support and process safety management. He joined PetroSkills as an instructor in 2014. His experience includes assignments in technical support, operations, turnarounds, project execution and HSE and engineering management. From 2006 he has worked as an Independent Engineering and Process Safety Consultant working with oil and gas clients. He has worked primarily with BP to design, develop and facilitate their global Process Safety training and awareness programs both for engineering and operations teams. In a varied 28-year career in BP he latterly worked to develop strategic business structures and information systems to manage Process Safety and Integrity Management for the BP Grangemouth operations teams. In a varied 28-year career in BP he latterly worked to develop strategic business structures and information systems to manage Process Safety and Integrity Management for the BP Grangemouth operations teams. In a varied 28-year career in BP he latterly worked to develop strategic business structures and information systems to manage Process Safety and Integrity Management for the BP Grangemouth operations teams.

MR. WES WRIGHT has 32 years’ experience in oil and gas producing facilities. Mr. Wright began teaching with PetroSkills in 2004 where he has been delivering courses in CO2 Surface Facilities, Oil and Gas Processing and Operator Training world-wide. Previously, Mr. Wright was the lead on-site engineer at the Weyburn CO2 Miscible flood where he was closely involved in the development, design, construction, start-up and operations. Through the 1980’s, Mr. Wright performed contract research at the University of Calgary in Enhanced Oil Recovery and was a consultant on a wide range of sweet and sour oil and gas projects across Western Canada. Mr. Wright graduated in 1983 with a BSc in Engineering from the University of Calgary. He is a Professional Engineer in Alberta, Canada and is a member of the SPE. He has been published in the ASME-DMAE, CSCE, IAH, and in Carbon Sequestration and Related Technologies (Wiley, 2011).

MR. CLYDE YOUNG has over 30 years of diverse experience in operations and maintenance of production and processing facilities. This includes significant experience in operations and development of management systems for gas processing and water/wastewater treatment facilities. This includes operating procedure development, training program development, compliance auditing, vulnerability assessment, emergency planning and mechanical integrity program development. Mr. Young provides many of our clients with PHA services, compliance audits and Hazards Reviews. Mr. Young has presented at the Mary K. O’Connor Process Safety Symposium and written several papers that have been published in various industry publications. Mr. Young holds a BS in Social Sciences from the University of Wyoming- Laramie Wyoming.

Business planning. Specific experience includes upstream projects (Middle East – Saudi Arabia, Egypt, Kuwait); oil & gas pipeline and production facilities (North America, Far East, FSU, Australia); FPSO/mobile system development projects (Canada, Asia-Pacific, West Africa); refining projects (USA and eastern Europe); and global business/strategic planning for the engineering and construction organization. Assignments have included establishing joint ventures and/or new offices in Vietnam, Pakistan, Nigeria, Australia, Canada, and Holland. Mr. Titworth has a BS in Chemical Engineering from the University of Houston, and is a registered professional engineer in four states.

MR. Peter Williams has over 35 years of industrial experience, most of which were in oil and gas processing. His experience includes plant design, engineering, operations support, project development and business case definition, project technical support, plant engineering management, and internal consulting, primarily with Saudi Aramco. Canadian experience includes plant engineering in phosphorous production, heavy water, and bitumen upgrading and project engineering. He also has experience with benchmarking, implementation of a safety management system, and the application of lean Six Sigma methods to engineering management. He has Masters’ degrees in Chemical Engineering and in Economics, is a Professional Engineer in Alberta and is a certified Six Sigma Black Belt.
Tip of the Month

Delivering Bad News to Stakeholders and Decision Makers

We all hate delivering bad project news, but this Tip of the Month will give you some tips to better communicate negative information to stakeholders and decision makers. Learn about five different types of project issues, managing project relationships, and best practices for delivering bad news.

9 Practical Tips for Motivating Oil and Gas Teams

This Tip of the Month discusses practical tips that have yielded strong positive results on oil and gas projects. The most important factor to a successful project is PEOPLE. There are many resources for monitoring projects, but most of these miss the key to a successful project. Processes and skills, with the right tools, at the right time, coupled with MOTIVATION is the major key to success.

The Importance of Specification Breaks

Spec Breaks are noted on P&ID’s and indicate where a specification change has occurred on piping with regards to flange rating, material, or insulation. They are extremely important in HAZOP’s when reviewing relief valve settings and the hazards introduced by creating overpressure situations by opening and closing valves downstream from a high pressure source.

Methyl Diethanolamine (MDEA) Vaporization Loss in Gas Sweetening Process

In this Tip of The Month, you will investigate the effect of pressure and temperature on the MDEA vaporization loss from the contactor top, regenerator top and flash gas. Specifically, this study focuses on the variation of MDEA vaporization losses with the feed sour gas pressure in the range of 5.52 MPa to 8.28 MPa (800 psia to 1200 psia).

The #1 Problem Facing Turnarounds, Shutdowns and Outages

Turnarounds, shutdowns and outages are often subject to late minute work scope changes resulting in extended downtime and cost overruns. In an effort to control downtime, management applies additional manpower, often resulting in inefficiencies and poor labor productivity. The result is cost overruns and a TSO that fails to fully meet the business needs.

Impact of CO2 on Natural Gas Density

Due to the importance of CO2 injection for enhanced oil recovery and the increasing interest in CO2 capture and sequestration, this Tip of the Month was undertaken to prepare simple charts for accurately estimating the density for hydrocarbon systems containing nil to 100% CO2.

Check out full articles at petroskills.com/totm
To register for a course, or for questions on inhouse training or any of our other solutions, contact our Customer Service Department at +1.918.828.2500 or training@petroskills.com.

CUSTOMER SERVICE
Tulsa.................... +1.918.828.2500
Toll-free................+1.800.821.5933
training@petroskills.com

PETROSKILLS CONFERENCE CENTER
Houston............... +1.832.426.1200

CERTIFICATES, PROFESSIONAL DEVELOPMENT HOURS (PDH), AND CONTINUING EDUCATION UNITS (CEU)

A Certificate of Completion is awarded to each participant who satisfactorily completes the course and will be awarded by the instructor(s) on the final day.

PetroSkills® course hours can be used to satisfy PDHs for licensed engineers in most US states. In many instances, course hours can be used for international CEU credit also. Every course certificate tells the number of CEUs earned and also can be used to submit to your licensing board or accrediting body for approval.

TERMS AND CONDITIONS

REGISTRATION AND PAYMENT

It is recommended participants register early due to limited seating. However, registrations can be submitted up to the last business day before class provided there are seats available. Registrations are confirmed when payment is received. Payment is due upon receipt of invoice and no later than 30 days before class. For registrations submitted less than 30 days before class, payment is due immediately otherwise a seat in the course cannot be guaranteed. Tuition fees are due and payable in US dollars. Please contact the Customer Service Department customerservice@petroskills.com if you cannot meet the payment requirements as registrations are not automatically cancelled when payment is not received.

TUITION FEES

Tuition fees include tuition, course material, daily refreshments and a non-refundable registration fee of $100.00 (USD) per five days of training or less. As a reminder a seat in the course is not confirmed until payment is received. Please note tuition fees do not include living costs. Participants are responsible for booking and paying for their own hotel accommodations. When possible, PetroSkills will reserve a block of sleeping rooms at suggested hotel(s). Participants should contact the suggested hotel directly at least three weeks before the course begins. Remember to mention PetroSkills and/or the course title to receive a discounted rate, if applicable.

Note: Where applicable due to government regulations, Goods and Services Tax (GST) or Value Added Tax (VAT) will be added to the total tuition fees. For events in the UK, the merchant of record contracting with cardholder is PetroSkills UK Limited, a UK entity. For events in Canada, the merchant of record contracting with cardholder is PetroSkills Canada Inc., a Canada entity. For events in Australia and the UAE, the merchant of record contracting with cardholder is PetroSkills LLC, a United States entity.

CANCELLATIONS, TRANSFERS, SUBSTITUTIONS, AND REFUNDS

A minimum of 30-day notice is required to cancel or transfer otherwise the tuition fee is forfeited or remains due if not already paid. Cancellation requests received 30-days or greater before class will be honored and tuition refunded, less the non-refundable registration fee mentioned above, provided there were no previous late requests to transfer. Transfer requests received 30-days or greater before class will be honored and tuition is transferrable provided there were no previous late request to transfer. Note: should there be a difference in tuition, the difference will be due. Only one transfer per initial registration is permitted.

Late requests to transfer into a future session of the same course will be considered provided the tuition is paid and the requested session is open for enrollment.

Substitutions of participants are permitted at any time without penalty.

Please contact the Customer Service Department customerservice@petroskills.com if you need to cancel, transfer, or make a substitution.

Transfers and cancellations will not be honored, and tuition is forfeited for courses that have reached maximum participation regardless of the amount of notice given.

PetroSkills reserves the right to cancel any course session at any time. The decision to cancel is generally made approximately two weeks before class. When a course cancels registered participants will be given the opportunity to transfer to another course or receive a full refund, provided the enrollment was not transferred into the cancelled course late. Keep this in mind when making travel arrangements (airline tickets, hotel reservations, etc.), as PetroSkills cannot be responsible for any fees incurred for cancelling or changing your travel arrangements.

We reserve the right to substitute course instructors as necessary.

DISCLAIMER

PetroSkills reserves the right without payment of consideration to videotape, film, photograph and/or record course sessions and course participants in any media type and to alter or edit these images for use in its publications, including website entries.

The use of any recording device (audio or video) by participants during a PetroSkills course is strictly prohibited. The unauthorized use of a recording device during a PetroSkills course presentation shall be grounds to remove the participant and confiscate or destroy the related recording. No portion of any PetroSkills course may be recorded digitally, on film, video tape, audio tape or other recording device or be reproduced photographically or by any sight or sound device. All PetroSkills course presentations are the sole property of PetroSkills.
PetroSkills Blended Learning Skill Modules™ combine industry knowledge, expertise, content, and technology to develop workforce competency with the added benefit of:

- **Reduced time to competency**
- **Eliminated travel expense**
- **Flexibility—less time away from work**
- **Learning applied at point of need**

Courses Available Now:
- Applied Reservoir Engineering
- Basic Drilling, Completion, and Workover Operations
- Basic Geophysics
- Basic Petroleum Technology Principles
- Basic Reservoir Engineering
- Basics of Rotating and Static Mechanical Equipment
- Casing Design Workshop
- Completions and Workovers
- Foundations of Petrophysics
- Gas Conditioning and Processing
- NODAL Analysis Workshop
- Process Safety Engineering
- Production Operations 1
- Production Technology for Other Disciplines
- Scale Identification, Remediation and Prevention Workshop

For more information, please visit petroskills.com/blended