NEW in 2020

- Accredited H&S Professional: GradIOSH, CMIOSH and ASP by Applied Learning (pg 23)
- Construction Management for the Project Professional (pg 30)
- Oil Well Pad Facilities (for Facilities Engineers) (pg 10)
- Oil Well Pad Facilities (for non-Facilities Engineers) (pg 8)
- Petroleum Project and Program Management Essentials (pg 28)
- Petroleum Project Changes and Claims Workshop (pg 30)
- Spill Control and Remediation Engineering (pg 23)
- Troubleshooting Gas Processing Facilities (pg 11)
- Troubleshooting Oil Processing Facilities (pg 11)
- More Virtual/Blended Learning Options Through PetroAcademy, including:
 - Basics of Rotating Mechanical Equipment (pg 14)
 - Basics of Static Mechanical Equipment (pg 14)
Message from the CEO

A competent workforce has always been critical for our industry’s success.

This guide presents the industry’s most comprehensive workforce development programs – focused on building competent people. PetroSkills brings together industry-driven and industry-approved programs that deliver flexible, practical, fit-for-purpose training and development. This guide can help you find ways to advance your technical competence and build your company’s value.

Since the first offerings of Production Operations 1 and the Campbell Gas Course® over 52 years ago, PetroSkills instructor-led training programs have set the standard for excellence from subsurface to downstream. This guide presents hundreds of sessions offered worldwide by top industry experts in each technical discipline across the value chain. Our competency-based programs are designed and delivered under the direction of the PetroSkills Alliance which includes some of the top petroleum companies worldwide, working together, to offer an industry-driven and vetted set of courses, products and services.

NEW courses to look for in this edition include:

- Accredited H&S Professional: GradIOSH, CMIOSH and ASP by Applied Learning (HSP) - page 23
- Construction Management for the Project Professional (FPM64) - page 30
- Oil Well Pad Facilities (For Facilities Engineers) (OWPF-FE) - page 10
- Oil Well Pad Facilities (For Non-Facilities Engineers) (OWPF-NFE) - page 8
- Petroleum Project and Program Management Essentials (P3ME) - page 28
- Petroleum Project Changes and Claims Workshop (PPCC) - page 30
- Spill Control and Remediation Engineering (SCRE) - page 23
- Troubleshooting Gas Processing Facilities (PF-49G) - page 11
- Troubleshooting Oil Processing Facilities (PF-49O) - page 11

In addition to our instructor-led programs, our digital learning solutions and professional services continue to lead the industry; see page 3 for more details.

Also, we are excited to announce that we have expanded our capabilities in operator training by acquiring Simulation Solutions Inc. This allows us to offer you a dynamic library of hands-on simulator training for console and outside operators. See petroskills.com/ssi for details.

We are proud that our blended/virtual learning program, PetroAcademy™, continues to grow. This unique course model delivers the same competency development as our face-to-face courses via virtually delivered Skill Modules™, available from anywhere in the world.

Two important blended/virtual courses have been added to our extensive library, and we will be adding more throughout 2020.

- Basics of Rotating Mechanical Equipment - page 14
- Basics of Static Mechanical Equipment - page 14

For a full list of blended/virtual courses, see the back cover, or petroskills.com/blended.

I hope you find this guide useful. If there is any way that we can help you, your team, or your organization, please don’t hesitate to contact me personally at ford.brett@petroskills.com, or contact our Customer Service Department at +1.918.828.2500.

Ford Brett
CEO, PetroSkills

Course Progression Map

GAS PROCESSING

6 Gas Conditioning and Processing (Campbell Gas Course®) – G4
6 Gas Conditioning and Processing Principles - G3 (Virtual/Blended course)
7 Gas Treating and Sulfur Recovery – G6
7 LNG Short Course: Technology and the LNG Chain – G29
7 Overview of Gas Processing – G2
7 Practical Computer Simulation Applications in Gas Processing – G5

PROCESS FACILITIES

10 Applied Water Technology in Oil and Gas Production – PF21
8 Choosing the Right Facilities Equipment for the Reservoir – PF3
11 CO₂ Surface Facilities – PF81
10 Fundamental and Practical Aspects of Produced Water Treating – PF23
9 Fundamentals of Process Safety - PS2
8 Introduction to Oil and Gas Production Facilities – PF2
8 Oil Production and Processing Facilities – PF4
10 Oil Well Pad Facilities (for Facilities Engineers) – OWPF-FE
8 Oil Well Pad Facilities (for non-Facilities Engineers) – OWPF-NFE
11 Offshore Gas Gathering Systems: Design and Operations – PF45
9 Process Safety Engineering – PS4
9 Process Safety Engineering Principles - PSE (Virtual/Blended course)
10 Relief and Flare Systems – PF44
9 Risk Based Process Safety Management – HS45
11 Troubleshooting Gas Processing Facilities - PF49G
11 Troubleshooting Oil Processing Facilities - PF49O

INSTRUMENTATION, CONTROLS & ELECTRICAL

12 Electrical Engineering Fundamentals for Facilities Engineers – E3
12 Flow and Level Custody Measurement – IC73
12 Instrumentation and Controls Fundamentals for Facilities Engineers – IC3
12 Instrumentation, Controls and Electrical Systems Overview for Non-Electrical Engineers – ICE21
13 Practical PID Control and Loop Tuning – IC74

MECHANICAL ENGINEERING

14 Basics of Rotating Mechanical Equipment - BRM (Virtual/Blended course)
14 Basics of Static Mechanical Equipment - BSM (Virtual/Blended course)
15 Compressor Systems - Mechanical Design and Specification – ME46
14 Corrosion Management in Production/Processing Operations – PF22
15 Fundamentals of Pump and Compressor Systems – ME44
15 Mechanical Specification of Pressure Vessels and Heat Exchangers – ME43
14 Piping Systems - Mechanical Design and Specification – ME41
TABLE OF CONTENTS

PIPELINE ENGINEERING
16 Offshore Pipeline Design and Construction – PL43
16 Onshore Pipeline Facilities - Design, Construction and Operations – PL42
16 Terminals and Storage Facilities – PL44

OFFSHORE & SUBSEA
17 Flow Assurance for Offshore Production – FAOP
17 Fundamentals of Offshore Systems Design and Construction – OS4
17 Overview of Offshore Systems – OS21
17 Overview of Subsea Systems – SS2

PROCUREMENT/SUPPLY CHAIN MANAGEMENT
27 Contracts and Tenders Fundamentals – SC41
27 Cost/Price Analysis and Total Cost Concepts in Supply Management – SC64
27 Effective Materials Management – SC42
27 Inside Procurement in Oil and Gas – SC61
27 Strategic Procurement and Supply Management in the Oil and Gas Industry – SC62
27 Supplier Relationship Management – SC63

PROJECT MANAGEMENT
29 Advanced Project Management – FPM62
29 Advanced Project Management II – FPM63
30 Advanced Project Management Workshop - APMW
30 Construction Management for the Project Professional - FPM64
28 Managing Brownfield Projects – FPM42
28 Petroleum Project and Program Management Essentials - P3ME
30 Petroleum Project Changes and Claims Workshop - PPCC
28 Petroleum Project Management: Principles and Practices – PPM
29 Project Controls for Capital Projects – PC21
28 Project Management for Engineering and Construction – FPM22
29 Turnaround, Shutdown and Outage Management – TSOM

MULTI-DISCIPLINE TRAINING
32 Basic Petroleum Technology Principles – BPT (Virtual/Blended course)
32 Basic Petroleum Technology – BPT
32 Overview of the Petroleum Industry – OVP
32 Operations Crew Resource Management - OCRM

34 INSTRUCTOR BIOGRAPHIES

PETROSKILLS SPECIAL FEATURES
2 PetroSkills Alliance
3 PetroSkills Solutions - Competency Development
4 Facilities Course Progression Map
16 ePilot - Midstream Operations and Pipeline e-Learning
19 In-House Training
22 ePilot Online EHS Course Library
24 Email Sign Up
30 Email Sign Up
31 Petroleum Professional Development Courses
15 PetroSkills Conference Center
33 Online Learning - ePilot and ePetro
Inside Back Cover Contact and Registration and Terms and Conditions
Inside Back Cover CEU/PDH Certificates
Back Cover PetroAcademy - Blended Learning Solutions

Any course is available in-house at your location. Contact us today.
+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
The PetroSkills Alliance was founded in 2001 by Shell, BP and OCGI, to provide “important but not unique” competency-based training to the oil and gas workforce. Alliance members are provided opportunities to collaborate around challenges facing organizational competency and workforce development.

Alliance benefits include:

- **GLOBAL BENCHMARKS and SHARED BEST PRACTICES**: Leverage processes and networks to align with strategic goals.
- **COMPETENCY DEVELOPMENT and ASSURANCE**: Common methodology and tools assure industry wide critical skills.
- **LEARNING and SHARING NETWORKS**: Speed time to solutions through regional workshops, learning forums, and community of practice.
- **FULL SPECTRUM of LEARNING RESOURCES**: Access instructor-led training, e-Learning, or blended learning activities.
- **CONTINUING COLLABORATIVE DISCUSSIONS**

The PetroSkills Alliance spans the full energy value chain. Member companies include:
Our Approach to Workforce Development

As a trusted advisor to the industry for over 50 years, PetroSkills understands the challenges that our clients face every day.

We can help:

- Bridge knowledge gaps in your workforce and develop an enterprise-wide training standard
- Accelerate time to competency for Engineers, Project Managers, Operators, and Technicians
- Assure the integrity of your investments by meeting regulatory and compliance demands

PetroSkills has the experts, processes, and technology to provide a comprehensive workforce development plan. We enable companies to develop a workforce able to meet business challenges, enhance effectiveness, achieve compliance goals, mitigate risk, and improve operations. With our deep industry experience and competency building expertise, PetroSkills is the industry’s trusted workforce development advisor.

For more information please email solutions@petroskills.com or visit our website at www.petroskills.com/solutions
Facilities Course Progression Map

Oil and Gas Processing

Gas
- Choosing the Right Facilities Equipment for the Reservoir – PF3 p.8
- Process Safety Engineering – PS4 p.9
- Corrosion Management in Production/Processing Operations – PF49 p.11

Oil / Water
- Process Safety Engineering Principles – PSE Virtual/Blended Course p.9
- Process Safety Engineering Fundamentals for Facilities Engineers – PS2 p.9

General Processing
- CO₂ Surface Facilities – PF81 p.12
- Separation Equipment – Selection & Sizing – PF44 p.10
- Oil Well Pad Facilities (For Facilities Engineers) – OWPF-FE p.10
- Oil Well Pad Facilities (For Non-Facilities Engineers) – OWPF-NFE p.8

Instrumentation, Controls & Electrical

Electrical
- Practical PID Control and Loop Tuning – IC74 p.13
- Flow and Level Custody Measurement – IC73 p.12
- Flow Assurance for Offshore Production – FAOP p.17

Instrumentation & Controls
- Electrical Engineering Fundamentals for Facilities Engineers – IC3 p.12
- Instrumentation and Controls Fundamentals for Facilities Engineers – IC3 p.12
- Instrumentation, Controls and Electrical Systems Overview for Non-Electrical Engineers – ICE21 p.12

Offshore & Subsea

Offshore Pipeline Design and Construction
- Offshore Pipeline Design and Construction – PL43 p.16

Terminals and Storage Facilities
- Terminals and Storage Facilities – PL44 p.16

Onshore Pipeline Facilities: Design, Construction and Operations
- Onshore Pipeline Facilities: Design, Construction and Operations – PL42 p.16

Pipeline Engineering

Facilities Course Progression Map

Gas Conditioning and Processing
- Gas Conditioning and Processing Principles – G3 Virtual/Blended Course p.6
- Gas Conditioning and Processing – G4 p.6

LNG Short Course: Technology and the LNG Chain
- LNG Short Course: Technology and the LNG Chain – G29 p.7

Oil Well Pad Facilities
- Introduction to Oil and Gas Production Facilities – PF2 p.8
- Oil Well Pad Facilities – OWPF-NFE p.8

Overview of Gas Processing
- Overview of Gas Processing – O2 p.7

Overview of Subsea Systems
- Overview of Subsea Systems – OS21 p.17

Overview of Offshore Systems
- Overview of Offshore Systems – OS21 p.17
Facilities Course Progression Map

<table>
<thead>
<tr>
<th>Mechanical Engineering</th>
<th>Operations & Maintenance</th>
<th>Project Mgmt.</th>
<th>Procurement/Supply Chain Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Rotating</td>
<td>Rotating</td>
<td>Reliability</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>Operations & Maintenance</td>
<td>Project Mgmt.</td>
<td>Procurement/Supply Chain Management</td>
</tr>
<tr>
<td>Non-Rotating</td>
<td>Rotating</td>
<td>Reliability</td>
<td></td>
</tr>
</tbody>
</table>

Additional courses available in:

- **Production & Completions**
 - p. 18-19
- **Health, Safety, Environment**
 - p. 22-23
- **Petroleum Business**
 - p. 24-26
- **Professional Petroleum Development**
 - p. 31
- **Multi-Discipline Training**
 - p. 32
Gas Conditioning and Processing – LNG Emphasis – G4 LNG

FOUNDATION 10-DAY

This is the LNG-industry version of our popular G4 course, with expanded coverage of refrigeration and LNG technologies. The course includes in-depth information on basic natural gas conditioning and processing. This is mainly the core G4 Campbell Gas Course® curriculum in an LNG context with the expanded refrigeration coverage. The course covers relevant details of both the mixed refrigerant (APCI) and cascade (ConocoPhillips) processes in LNG liquefaction. Reference is made to other liquefaction processes including Mixed Fluid Cascade Process, Dual Mixed Refrigerant Process, and Nitrogen (single or dual) Cycles being developed for FLNG projects. This is followed by higher level coverage of the LNG value chain consisting of a gas liquefaction section; LNG run-down to LNG storage; loading berth for LNG export; LNG shipping; and LNG receiving and regasification terminals. Versions of this course have been taught in many of the world’s base-load and peak-shaving LNG plants, such as in Australia, Indonesia, Malaysia, Norway, Qatar, UK, and West Indies.

DESIGNED FOR

Personnel involved with natural gas processing and LNG production, as well as anyone interested in a solid technical understanding of the principles of an LNG plant.

YOU WILL LEARN

- The basics of LNG gas conditioning and processing
- Selection and evaluation processes used to dehydrate natural gas, remove heavy components and other contaminants, and extract NGLs for LNG plants
- Physical/thermodynamic property correlations and principles, including heating values, etc.; as applied to gas processing and LNG plants
- Fundamentals of propane, propane precooled, mixed refrigerants, and cascade systems used in LNG plants
- Key points in other LNG liquefaction technologies
- How to perform and review equipment sizing for major process equipment
- Solutions to operating problems and control issues in LNG and gas processing facilities

COURSE CONTENT

Basic gas technology principles • Terminology and nomenclature • Physical properties of hydrocarbons • Qualitative phase behavior • Vapor-liquid equilibrium • Water-hydrocarbon system behavior, hydrates, etc. • Thermodynamics of LNG processes • Selection and evaluation processes used to dehydrate natural gas, remove heavy components and other contaminants, and extract NGLs for LNG plants • Physical/thermodynamic property correlations and principles, including heating values, etc.; as applied to gas processing and LNG plants • Key points in other LNG liquefaction technologies • How to perform and review equipment sizing for major process equipment • Solutions to operating problems and control issues in LNG and gas processing facilities

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOHA, QATAR</td>
<td>1-12 Nov</td>
<td>$9990</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>15-26 June</td>
<td>$9115</td>
</tr>
<tr>
<td>PERTH, AUSTRALIA</td>
<td>10-21 Feb</td>
<td>$9995+GST</td>
</tr>
</tbody>
</table>

Gas Conditioning and Processing – G4

The Campbell Gas Course®

FOUNDATION 10-DAY

The Campbell Gas Course® has been the industry standard for more than 52 years and the core competencies of the Campbell Gas Course are now available in self-paced online Skill Modules™. These competencies set the base knowledge that is required for a successful career as an entry-level facilities engineer, seasoned operator, and/or field supervisor. These modules provide an understanding of common terminology, hydrocarbons and their physical properties, qualitative and quantitative phase behavior, hydrates, and fluid flow. In addition, they provide a systematic approach to understanding the common types of equipment, and the primary unit operations in both offshore and onshore gas conditioning and processing facilities. Each module ranges from 3 – 5 hours of self-paced activities, with pre and post assessments. In addition, the modules have interactive exercises and problems to solve on the various topics.

SKILL MODULES

- Hydrocarbon Components and Physical Properties
- Introduction to Production and Gas Processing Facilities
- Qualitative Phase Behavior and Vapor Liquid Equilibrium
- Water/Hydrocarbon Phase Behavior
- Thermodynamics and Application of Energy Balances
- Fluid Flow
- Separation
- Heat Transfer Equipment Overview
- Pumps and Compressors Overview
- Refrigeration, NGL Extraction, and Fractionation
- Contaminant Removal - Gas Dehydration
- Contaminant Removal - Acid Gas and Mercury

Self-paced, virtual course - start anytime.
Tuition US$4325

FOR MORE INFORMATION, VISIT PETROSKILLS.COM/G3ONLINE
Overview of Gas Processing – G2

BASIC 3-DAY

G2 is a versatile overview of the gas conditioning and processing industry. This course is designed for a broad audience and is engaging and interactive, utilizing basic technical exercises and terminology to communicate key learning points. This course does not cover the technology and engineering principles in depth, and is only recommended for those needing an overview of the industry and common processes and equipment used.

DESIGNED FOR

As a wide-ranging overview, it is suitable for interested parties, such as geologists, reservoir engineers, procurement professionals, and sales or business development staff; related specialists like environmental staff, operational staff, and shift foremen; those new to the industry, such as entry-level (1-2 year) engineers; or anyone interested in a general, technically-oriented overview of the gas processing industry.

YOU WILL LEARN

- An overview of natural gas and world energy trends
- Natural gas sources, makeup, properties, specifications, and related oil and gas terminology
- Markets and uses for NGL, LPG, ethane, propane, and butane
- Summary of gas processing costs, and commercial and contract issues in liquids extraction
- How gas is transported and sold
- Overview of the common equipment used in the oil and gas industry, including heat exchangers, pumps, and compressors
- Options for various basic gas conditioning and processing steps, including acid gas removal, dehydration, liquid extraction, product fractionation, LNG overview, pipelines, sulfur recovery, and acid gas injection

COURSE CONTENT

- Natural gas and world energy trends
- Hydrocarbon components and physical properties
- The role of gas processing in the natural gas value chain
- Heat transfer equipment
- Pumps and compressors
- Acid gas removal
- Gas dehydration
- NGL extraction
- Fractionation and stabilization
- LNG
- Pipelines and storage
- Sulfur recovery and acid gas injection

LNG Short Course: Technology and the LNG Chain – G29

BASIC 5-DAY

This LNG Short Course is designed for participants requiring moderate technical coverage, coupled with information on LNG commerce and all parts of the LNG Value Chain. Over 5 days, the course covers technical LNG basics and facility operation topics, plus technical, design, and commercial issues. Selected exercises and syndicates are used to reinforce the main topics of LNG trade and technology. House versions are available with either increased technical and operational emphasis or increased project and development emphasis. More in-depth coverage for technical, production, and processing personnel is available in our 10-day course, G4 LNG Gas Conditioning and Processing – LNG emphasis.

DESIGNED FOR

Gas and LNG managers and staff looking for a concise overview; engineers new to the LNG industry; operations supervision staff and senior plant personnel; specialists looking to broaden their general knowledge of LNG; and staff involved in LNG commerce and interested in LNG technical fundamentals.

YOU WILL LEARN

- What LNG, why it is produced, and what is the current status of the industry
- LNG facilities world-wide
- The LNG chain and impact of contractual issues on LNG plant design and operation; LNG pricing
- A survey of commercial and contractual issues
- Project costs, feasibility, development, and issues
- Some technical fundamentals of gas processing, such as molecular weight, heating value, Wobbe Index, vapor pressure, multi-component mixtures, thermodynamics
- Refrigeration: single and multi-component refrigeration cycles
- Technologies used in the production of LNG for base-load and small scale production, issues relating to technology selection, and operation
- Equipment used in the production of LNG: heat exchangers, compressors and drivers used for LNG, pumps, and turbo expanders
- To apply knowledge of LNG gas pretreatment, drying, and refrigeration
- About LNG storage, shipping, and terminals, sizing basis, and small scale tanks
- Types of LNG carriers, marine management issues, and LNG transfer
- LNG importing, regasification of LNG and distribution to consumers, basis for sizing, technology selection, and energy integration
- New developments: development of offshore LNG operations to regasification and liquefaction; coal seam gas project issues
- Site selection and HSSE considerations

COURSE CONTENT

- What LNG is and where it comes from
- Physical properties of LNG
- Vapor-liquid equilibrium behavior of LNG and refrigerants
- Gas pre-treatment
- Heat exchangers
- Refrigeration
- Rotating machinery
- Liquidation processes
- LNG storage
- LNG shipping
- LNG importing

Practical Computer Simulation Applications in Gas Processing – G5

INTERMEDIATE 5-DAY

This full 5-day course covers sweet gas processing and NGL extraction, using a commercial simulator to perform calculations. A basic working knowledge of the commercial process simulation package used (generally UNISIM) is suggested to achieve the course learning objectives. Volumes 1 and 2 of the John M. Campbell textbooks, Gas Conditioning and Processing, are the basis for the material presented, coupled with a ‘red thread’ comprehensive exercise based on a typical gas processing facility (can be applied to onshore or offshore facilities). The exercise is developed in stages as the material is covered. Participants will develop a comprehensive process simulation that includes a dew point control process, a mechanical refrigeration process with economizers, hydrate inhibition using MEG, and NGL liquid product stabilization with recycle.

NOTE: The individual exercises include condensed gas processing fundamentals drawn from the internationally famous Campbell Gas Course® textbooks Volumes 1 & 2.

DESIGNED FOR

Engineers that require practical in-depth training on natural gas processing and NGL recovery processes, with emphasis on the use and benefits of a simulation package.

YOU WILL LEARN

- To determine the water content and hydrate formation conditions for gas streams using both a commercial process simulator and hand calculation methods
- Techniques to inhibit hydrate formation, including injection of inhibitor addition—e.g., hydrated methane and MEG
- Preliminary design and evaluation of TEG dehydration processes using quick hand calculations
- Process design used to control the hydrocarbon dew point of sales gas streams by removing NGLs using mechanical refrigeration processes
- How to use the process simulator to evaluate the impact that pressure and temperature changes have on the sizing of process equipment and levels of NGL recovery
- How to use short-cut distillation calculations to provide input to rigorous distillation simulations in order to obtain faster convergence
- Which thermodynamic property correlations are appropriate for various gas processing systems
- Limitations associated with commercial simulation packages and how the results can be quickly checked for relative accuracy

COURSE CONTENT

- Physical properties of hydrocarbons
- Qualitative phase behavior
- Vapor-liquid equilibrium
- Water-hydrocarbon equilibrium
- Basic thermodynamic concepts
- Separation equipment
- Heat transfer
- Pumps
- Compressors
- and more...

Gas Treating and Sulfur Recovery – G6

INTERMEDIATE 5-DAY

This course emphasizes process selection, practical operating issues, technical fundamentals, and integration of the sweetening facilities into the overall scheme of gas processing. Sulfur recovery and tail gas processes are also covered, including standard Claus configurations, SuperClaus, EuroClaus, SCOT, etc. Special design and operation topics, such as trace sulfur compound handling and the importance of H₂S/CO₂ ratio, are covered as well. Related topics reviewed during the course include liquid product treating, corrosion, materials selection, and NACE requirements.

DESIGNED FOR

Production and processing personnel involved with natural gas treating and sulfur recovery, requiring an understanding of the principles of these process operations. This course is for facilities engineers, process engineers, operations personnel, and field supervisors, as well as others who select, design, install, evaluate, or operate gas sweetening and sulfur recovery facilities.

YOU WILL LEARN

- Evaluation and selection of processes to remove acid gases (H₂S, CO₂, COS, CS₂, mercaptans, etc.) from gas and NGLs
- The advantages and disadvantages of available gas treating technology and processes
- How to estimate solvent circulation rates, removal requirements, and equipment sizes
- To recognize and evaluate solutions to common operating and technical problems
- Sulfur recovery technologies, including an overview of the Claus Sulfur process
- How to select among the proper sulfur recovery process given differing process conditions
- Tail gas cleanup

COURSE CONTENT

- Fundamentals of sour gas processing, sweetening, etc.
- Overview of gas treating and sulfur recovery, terminology
- Gas specifications and process selection criteria
- Generic and specialty amine treating
- Common operating and technical problems
- Proprietary amine solvents, such as Sulfinil and Flexisorb
- Carbonate processes
- Physical absorption processes, e.g. Selexol
- Metallurgical processes (corrosion)
- Other technologies and new developments
- Selective treating, acid gas enrichment
- Solid bed and non-regenerable treating
- Scavengers
- Liquid product treating
- Sulfur recovery processes (including degassing)
- Liquid gas clean-up (SCOT, DOR, CBA, and others)
- Acid gas injection
- Membranes
- Emerging and new technologies

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Course</th>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of Gas Processing – G2</td>
<td>Houston, US</td>
<td>29-30 Sep</td>
<td>$3250</td>
</tr>
<tr>
<td></td>
<td>Kuala Lumpur, MYS</td>
<td>15-17 Jun</td>
<td>$4120</td>
</tr>
<tr>
<td></td>
<td>London, UK</td>
<td>16-18 Mar</td>
<td>$3700+VAT</td>
</tr>
<tr>
<td>LNG Short Course: Technology and the LNG Chain – G29</td>
<td>Houston, US</td>
<td>23-24 Oct</td>
<td>$4310</td>
</tr>
<tr>
<td></td>
<td>Kuala Lumpur, MYS</td>
<td>5-9 Oct</td>
<td>$4170</td>
</tr>
<tr>
<td></td>
<td>London, UK</td>
<td>20-24 Apr</td>
<td>$5035+VAT</td>
</tr>
<tr>
<td>Gas Treating and Sulfur Recovery – G6</td>
<td>Dubai, UAE</td>
<td>18-22 Oct</td>
<td>$5770+VAT</td>
</tr>
<tr>
<td></td>
<td>Houston, US</td>
<td>8-12 Jun</td>
<td>$4590</td>
</tr>
<tr>
<td></td>
<td>Kuala Lumpur, MYS</td>
<td>15-19 Oct</td>
<td>$5035+VAT</td>
</tr>
<tr>
<td></td>
<td>London, UK</td>
<td>29-3 Sep</td>
<td>$5360+VAT</td>
</tr>
</tbody>
</table>

Prices include computer charge
Introduction to Oil and Gas Production Facilities – PF2

BASIC 3-DAY

The scope of the discussion ranges from an overview of the oil and gas industry, hydrocarbon phase behavior characteristics, and different reservoir types, to product specifications and the processes used to meet these. Other facilities considerations are addressed, such as process safety and downstream processing that may impact the production facility selection and operation.

DESIGNED FOR
Those interested in an overview of production facilities, including subsurface professionals, line managers, sales or business development staff, environmental personnel, operations staff, and those new to the industry.

YOU WILL LEARN
• How the reservoir type, drive mechanism, fluid properties, location, and product specifications influence the selection and design of the production facilities
• How to do quick ‘back of the envelope’ calculations to better understand equipment sizing and capacity
• Parameters that affect the design and specification of oil stabilization and dehydration equipment
• Awareness of the parameters that determine flowline/gathering system capacity
• The purpose of separators in a production facility and familiarity with the typical configurations
• Typical design parameters, operating envelopes, common operating problems of oil and gas production equipment, and the effect of changing feed conditions over the life of a field
• To describe oil dehydration/desalting process options and equipment
• Produced water treating options and the dependence on surface vs. subsurface, offshore vs. onshore disposal
• Compressor performance characteristics and how they affect production rates and facility throughput
• Gas dehydration process options, with a particular emphasis on glycol dehydration
• The principles of asset integrity and inherently safe design given the rate, composition, temperature, and pressure of the production stream
• About midstream facilities required downstream of the primary production facility to deliver saleable products to the market, and how these facilities are affected by production rates, composition, and production facility performance

COURSE CONTENT
Overview of oil and gas industry • Qualitative phase behavior and reservoirs • Hydrocarbon properties and terminology • Typical sales/disposal specifications • Flowlines, piping and gathering systems • Production separation • Oil processing • Water injection systems (including pumps) • Gas handling • Compression, dehydration • Measurement and storage • Other facility considerations • utilities, process safety • Midstream facilities • gas processing, pipelines, LNG

Choosing the Right Facilities Equipment for the Reservoir – PF3

BASIC 5-DAY

This course is similar to Introduction to Oil and Gas Production Facilities (PF-2), but is presented in the context of concept selection and front-end field development planning.

DESIGNED FOR
This course is intended for those working on field development teams, as well as those who need to better understand how surface facilities are selected and how subsurface characteristics affect facility design and specification.

YOU WILL LEARN
• How to develop the project framework and decision making strategy
• How the specification of production/ processing facilities is influenced by reservoir type, drive mechanism, fluid properties, location, and contractual obligations
• Operating conditions that affect the specification of the production facilities from the wellhead through initial separation
• Parameters that affect the design and specification of oil stabilization and dehydration equipment
• The design and specification of produced water systems appropriate for the rate and composition of the produced water to meet the required environmental regulations and/or injection well capacity
• The design and specification of gas handling facilities, including compression dehydration equipment
• The impact of artificial lift systems and secondary/tertiary production projects on facilities selection and design
• The principles of asset integrity and inherently safe design given the rate, composition, temperature, and pressure of the production stream
• About midstream facilities required downstream of the primary production facility to deliver saleable products to the market, and how these facilities are affected by production rates, composition, and production facility performance

COURSE CONTENT
Reservoir types, fluid properties, and typical product specifications • Flowlines, gathering systems, flow assurance, and production separation • Oil dehydration and stabilization • Produced water treating and water injection systems • Gas handling, including compression, dehydration, and sweetening • The effect of artificial lift systems, and secondary and tertiary recovery projects • Midstream facilities - gas processing, pipelines, product storage, and LNG • Other facility considerations - utility systems, process safety and asset integrity, and environmental regulations

Oil Well Pad Facilities for non-Facilities Engineers – OWPF-nFE

BASIC 3-DAY

NEW

This course provides a comprehensive overview of onshore oil well-pad facilities as typically utilized for the development of shale/light oil fields. The course is focused on the purpose, function, and operation of the facilities - what, why, how - not on the more detailed engineering aspects which are covered in a companion course OWPF-FE (for Facilities Engineers). A major aspect of the non-Facilities Engineers course is how the pad facilities integrate with the wells/subsurface and also the product (oil, gas, produced water) export systems. This course does not contain many calculations; instead the intent is to generate discussion and better understanding of the issues involved in design, operation and maintenance of the pad facilities, and their role in providing value to the development as a whole.

DESIGNED FOR
This course is aimed primarily at non-Facilities Engineers, e.g. production/reservoir engineers, operations personnel, environmental staff, etc, or anyone who needs a basic understanding of oil well pad facilities – what they do and how they work.

YOU WILL LEARN
• The different types of process flow schemes typically used for oil well pad facilities
• The various types of engineering drawings used to describe facilities and how to interpret them
• How well production characteristics/performance should be integrated into the facilities design
• The range of fluid compositions and properties typically encountered in the newer shale/light oil developments and their impact on facilities design and operation
• The main processing requirements and associated equipment types typically required
• How the various processes and equipment types work with focus on the requirements of typical onshore shale/light oil well pad facilities
• Effects of third party gas gathering system design and operation on the well pad facilities

COURSE CONTENT
Engineering drawings • Oil well pad process flow diagrams • Well production characteristics • Fluid compositions and properties • Separation equipment • Oil treating • Oil stabilization and storage • Sand, wax, asphaltenes, etc. • The different types of process flow schemes typically used for oil well pad facilities • The various types of engineering drawings used to describe facilities and how to interpret them • How well production characteristics/performance should be integrated into the facilities design • The range of fluid compositions and properties typically encountered in the newer shale/light oil developments and their impact on facilities design and operation • The main processing requirements and associated equipment types typically required • How the various processes and equipment types work with focus on the requirements of typical onshore shale/light oil well pad facilities • Effects of third party gas gathering system design and operation on the well pad facilities

Oil Production and Processing Facilities – PF4

FOUNDATION 10-DAY

The emphasis of this course is on oil production facilities - from the wellhead, to the delivery of a specification crude oil product, to the refinery. Both onshore and offshore facilities are discussed. Produced water treating and water injection systems are also covered. Solution gas handling processes and equipment will be discussed at a relatively high level. In addition to the engineering aspects of oil production facilities, practical operating problems will also be covered, including emulsion treatment, sand handling, dealing with wax and asphaltenes, etc. Exercises requiring calculations are utilized throughout the course. The course is intended to complement the G-4 Gas Conditioning and Processing course, focused on the gas handling side of the upstream oil and gas facilities area.

DESIGNED FOR
Process/facilities engineers and senior operating personnel involved with the design and operation of oil and produced water processing facilities.

YOU WILL LEARN
• Well inflow performance and its impact on production/processing facilities
• About oil, gas, and water compositions and properties needed for equipment selection and sizing
• How to select and evaluate processes and equipment used to meet sales or disposal specifications
• To apply physical and thermodynamic property correlations and principles to the design and evaluation of oil production and processing facilities
• How to perform equipment sizing calculations for major production facility separation equipment
• To evaluate processing configurations for different applications
• How to recognize and develop solutions to operating problems in oil/water processing facilities

COURSE CONTENT
Reservoir traps, rocks, and drive mechanisms • Phase envelopes and reservoir fluid classification • Well inflow performance • Artificial lift • Gas, oil, and water - composition and properties • Oil gathering systems • Gas-liquid separation equipment • Emulsions • Oil-water separation • Oil treating • Desalting • Oil stabilization and sweetening • Oil storage and vapor recovery • Sand, wax, asphaltenes, and scale • Transportation of crude oil • Produced water treatment • Water injection systems • Solution gas handling

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Start Date</th>
<th>End Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON, US</td>
<td>29-30 SEP</td>
<td>4-6 MAY</td>
<td>$3250</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>11-13 NOV</td>
<td>17-18 DEC</td>
<td>$3350</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>29 JAN-10 FEB</td>
<td>17-18 MAR</td>
<td>$3350</td>
</tr>
</tbody>
</table>

All courses are available in-house at your location. Contact us today.
PetroSkills PetroAcademy

Foundations of Process Safety – PSF2

5-DAY

The course will cover the fundamentals of Process Safety for all staff levels of processing facilities in the upstream and downstream oil, gas, and petrochemical industry. To identify how different disciplines and roles can have an impact on Process Safety performance, there is a rolling case study (Project COLEX) throughout the course that involves the installation of a separator vessel. The associated Process Safety concepts and implications are explored and discussed at the various stages, from design to full operation.

DESIGNED FOR

The course will benefit all staff associated with the operation, maintenance, and governance in production and processing facilities. It is relevant to roles, including senior management, project and engineering teams, HSE support, supervisors, operators and maintenance technicians. An understanding is provided of the design basis and essentials for safe operations, without addressing the more detailed calculation aspects covered in Process Safety Engineering PS4.

YOU WILL LEARN HOW TO

- Identify the systems and processes required to enhance process safety in a high hazard installation
- Identify and choose appropriate techniques and tools to qualitatively assess process hazards
- Determine appropriate risk reduction strategies and identify effective risk reduction measures to prevent, control, and mitigate process safety risk
- Recognize and develop systems to manage Process Safety in operations through operating procedures and operating limits, ensuring plant integrity through maintenance and inspection
- Use a management of change process to minimize risk of change
- Identify and monitor key performance measures and verifications to maintain and improve safety performance

COURSE CONTENT

Business context for Process Safety • Risk assessment (hazard identification, hazard scenarios, consequence and likelihood analysis, and risk analysis and tools and techniques) • Risk reduction measures (barriers) • Management of process safety in operations (operating procedures, design and operating limits, human factors, inspection and maintenance, and emergency response) • Management of change • Learning from previous incidents and near misses • Self-verification and measurement • Process safety key performance indicators • Management review and auditing • Process safety leadership (governance and culture)

Self-paced, virtual course
- start anytime.
Tuition US$4325

FOR MORE INFORMATION, VISIT
PETROSKILLS.COM/PSONLINE

2020 Schedule and Tuition (USD)

- Doha, Qatar 12-16 April $5710
- Dubai, UAE 22-26 November $5710 +VAT
- Houston, US 24-28 August $4525
- Kuala Lumpur, MYS 30 March-3 April $6015
- London, UK 14-18 December $6265 +VAT
- Perth, Australia 29 June-3 July $6195 +VAT

2020 Schedule and Tuition (USD)

- Denver, US 26-30 October $4410
- Dubai, UAE 13-17 September $5590 +VAT
- Houston, US 13-17 April $4110
- Kuwait City, Kuwait 6-10 December $5580
- London, UK 27-31 July $5135 +VAT

Process Safety Engineering Principles – PSE

40 HOURS

BLENDED LEARNING

This course will be delivered virtually through PetroAcademy providing participants with the knowledge they need at their convenience.

This Process Safety Engineering Principles Blended Program provides an overview of process safety engineering fundamentals for hydrocarbon processing facilities. The focus of this course is on the engineering/design aspects of Process Safety Management. Frequent reference is made to historical incidents and recurring problem areas.

Techniques for analyzing and mitigating process safety hazards applicable to oil and gas processing will also be reviewed. This program integrates the concepts covered to achieve a measured approach to Process Safety Engineering.

DESIGNED FOR

Anyone who has to deal with concepts of process safety engineering, this would include facilities engineers, operations and maintenance supervisors, project engineers and managers, entry level process safety engineers, experienced professionals new to oil and gas, and anyone who needs a general understanding of the breadth of the process safety engineering discipline. Technical staff from insurance companies and regulatory agencies have found the course useful. Those requiring a less technical course may be interested in PS2, Fundamentals of Process Safety, and risk-based process safety management is the subject of HS45.

YOU WILL LEARN

- How to analyze and assess different types of risk analyses
- How to utilize models that are associated with risk management
- The importance of building safety into processes
- How Inherently Safer Design can be applied and more...

COURSE CONTENT

Process Safety Risk Analysis and Inherently Safer Design • Process Hazards Analysis and Layers of Protection analysis techniques • Leakage and dispersion of hydrocarbons • Combustion behavior of hydrocarbons • Sources of ignition and hazardous area classification • Specific plant systems and equipment • Relief and flare systems • Historical incident databases, plant layout and equipment spacing • Fire protection systems • SIS, monitoring and control

Risk Based Process Safety Management – HS45

5-DAY

This course introduces process safety management in the oil and gas industry, the elements and benefits of process safety management systems, and tools for implementing and managing a system. In this course the participant will learn to use tools and techniques for managing process safety. The Center for Chemical Process Safety’s (CCPS) book titled “Guidelines for Risk Based Process Safety” or “HRPS Guidelines” will be the text for this course. Participant-centered exercises and selected case studies will be used to build on the concepts that CCPS advocates for risk-based process safety.

Throughout the course, participants will be challenged to think how their process safety management system can be enhanced and modified to meet the concepts of risk-based decision making. An individual action plan will be developed to apply the information from the course to the workplace.

DESIGNED FOR

HSE professionals, operations and maintenance technicians, engineers, supervisors and project managers requiring a basic foundation in developing and managing process safety. The more technical aspects of process safety engineering are covered in PS4, Process Safety Engineering.

YOU WILL LEARN HOW TO

- Identify processes applicable to Process Safety Management (PSM) and describe relevant terms used
- Identify which standards are to be applied for managing process hazards
- Apply programs and tools for managing a PSM system
- Choose appropriate decision making methods and tools to identify process hazards
- Describe and use techniques available for control of hazards associated with process designs
- Describe the criteria and methods of selecting equipment and safeguarding controls
- Research and apply the performance parameters for the safety systems in operations
- Explain the role of all disciplines and their contribution to the management of potential HSE hazards

COURSE CONTENT

Process safety culture and competency • Compliance with standards • Understand hazards and risk • Operating procedures and safe work practices • Asset integrity and reliability • Management of change • Conduct of operations • Incident investigation (associated with plant failures) • Measurement and metrics • Management review and continuous improvement

2020 Schedule and Tuition (USD)

- Denver, US 28 June-2 July $4410
- Houston, US 13-17 April $5590 +VAT
- Kuwait City, Kuwait 6-10 December $5580
- London, UK 27-31 July $5135 +VAT

2020 Schedule and Tuition (USD)

- Denver, US 26-30 October $4410
- Dubai, UAE 13-17 September $5590 +VAT
- Houston, US 13-17 April $4110
- Kuwait City, Kuwait 6-10 December $5580
- London, UK 27-31 July $5135 +VAT

Foundation 5-Day

Process Safety Engineering – PS4

5-DAY

Foundations of Process Safety – PSF2

5-DAY

The course will cover the fundamentals of Process Safety for all staff levels of processing facilities in the upstream and downstream oil, gas, and petrochemical industry. To identify how different disciplines and roles can have an impact on Process Safety performance, there is a rolling case study (Project COLEX) throughout the course that involves the installation of a separator vessel. The associated Process Safety concepts and implications are explored and discussed at the various stages, from design to full operation.

DESIGNED FOR

The course will benefit all staff associated with the operation, maintenance, and governance in production and processing facilities. It is relevant to roles, including senior management, project and engineering teams, HSE support, supervisors, operators and maintenance technicians. An understanding is provided of the design basis and essentials for safe operations, without addressing the more detailed calculation aspects covered in Process Safety Engineering PS4.

YOU WILL LEARN HOW TO

- Identify the systems and processes required to enhance process safety in a high hazard installation
- Identify and choose appropriate techniques and tools to qualitatively assess process hazards
- Determine appropriate risk reduction strategies and identify effective risk reduction measures to prevent, control, and mitigate process safety risk
- Recognize and develop systems to manage Process Safety in operations through operating procedures and operating limits, ensuring plant integrity through maintenance and inspection
- Use a management of change process to minimize risk of change
- Identify and monitor key performance measures and verifications to maintain and improve safety performance

COURSE CONTENT

Business context for Process Safety • Risk assessment (hazard identification, hazard scenarios, consequence and likelihood analysis, and risk analysis and tools and techniques) • Risk reduction measures (barriers) • Management of process safety in operations (operating procedures, design and operating limits, human factors, inspection and maintenance, and emergency response) • Management of change • Learning from previous incidents and near misses • Self-verification and measurement • Process safety key performance indicators • Management review and auditing • Process safety leadership (governance and culture)
Applied Water Technology in Oil and Gas Production – PF21

FOUNDATION 5-DAY

This course provides an overview of the main water handling systems typically encountered in upstream (E&P) production operations, both onshore and offshore. The chemistry of the main water-related problems of mineral scales, corrosion, bacteria, and oily water will be reviewed both from the theoretical and practical aspects. Produced water treatment equipment and typical water quality specifications will also be reviewed, as well as water injection and disposal systems. An exercise will be given to identify typical system problems and to apply the knowledge you gained to propose solutions. Emphasis will be placed on understanding and resolving operational problems in process equipment.

DESIGNED FOR
Managers, engineers, chemists, and operators needing to understand water-related problems in oil and gas production and their solutions.

YOU WILL LEARN
- The basics of oilfield water chemistry
- How to monitor and control corrosion scale, and bacterial growth in produced water and water injection/disposal systems
- How to implement system surveillance programs to detect potential problems before system damage occurs
- Produced (oily) water treatment options and related treatment equipment
- How to use the knowledge gained to identify typical system problems and be able to propose solutions

COURSE CONTENT
- Water chemistry fundamentals • Water sampling and analysis
- Water formed scales • Corrosion control
- Water treatment microbiology • Produced water discharge/disposal and treatment principles
- Produced water treatment equipment • theory of operation, advantages, and disadvantages, and the importance of oil droplet size
- Water injection and disposal systems • theory of operation, corrosion, scale, and biological control
- Case study

Fundamental and Practical Aspects of Produced Water Treatment – PF23

FOUNDATION 5-DAY

This course covers topics related to Produced Water Treatment in upstream oil and gas operations. Produced water composition and physical properties are covered. Water quality requirements for various disposal methods are addressed, including onshore surface discharge, offshore discharge to sea, and reinjection for disposal or wastewater. Regulatory requirements and analytical methods used to monitor and ensure regulatory compliance are discussed. Treatment technology is presented along with practical considerations for selecting and operating typical water treatment equipment. Representative process flow diagrams illustrate equipment selection, design features, layout, and processes. Chemical treatment options are also considered.

DESIGNED FOR
Managers, engineers, chemists, and senior operations personnel responsible for designing, operating, and maintaining facilities that process and manage produced water. This course will provide participants with an understanding of the technical aspects required to select, design, maintain, and troubleshoot produced water equipment.

YOU WILL LEARN
- How produced water compositions affect water treatment system design and performance
- How to interpret water analytical data and calculate common Scale Indices
- How to interpret formation and contribute to water treatment challenges
- How Total Suspended Solids (TSS) affects water quality and what to do about it
- What water quality is required for surface or overhead disposal, for injection disposal, or for beneficial use
- The regulatory requirements for offshore water disposal and what is in an NPDES Permit
- What analytical methods actually measure and how to select an appropriate method
- How separators, clarifier tanks, CPis, hydrocyclones, flotation cells, and bed filtration work and how to improve their performance
- The most common causes of water treating problems and how to diagnose and resolve them
- Typical PFIs used to illustrate operational issues

COURSE CONTENT
- Introduction to water treatment technology and issues
- Produced water chemistry and characterization
- Defining and characterizing emulsions that impact water quality and treatment
- Water quality requirements for injection or surface disposal, NPDES permits, analytical methods • Primary water treatment technologies • Separators, hydrocyclones, and CPis • Secondary water treatment • induced gas flotation
- Tertiary water treatment technologies • media and membrane filtration • Chemicals and chemical treatment • Diagnostic testing and in-field observations • Diagnosing and resolving water treatment issues based on actual field experiences

Oil Well Pad Facilities (for Facilities Engineers) – OWPF-EE

FOUNDATION 5-DAY

NEW

This course is focused on onshore well-pad facilities that are typically used for the development of shale/light oil fields. The course starts with the review of typical well-pad facility process flow diagrams (PFDs) and the considerations involved in selecting a suitable PF for the given conditions. Variations on the different PFs are evaluated and their applications, pros and cons discussed. The main equipment types utilized are reviewed with focus on how they contribute to the design of the facility and its operational performance. This course is understanding the interfaces between the producing wells, the well-pad facility, and the gas, oil, and produced water export systems. Numerous exercises and calculations will be utilized throughout the course to develop skills to solve problems and understand competence level in the areas covered. This course differs from the OWPF-NFE (Non-Facilities Engineers) course in that it is longer, goes into more detail in the subject areas, and is focused on facilities engineering aspects and calculations.

YOU WILL LEARN
- How to size flare knockout drums
- How to calculate relief valve inlet losses
- How to calculate relief valve discharge losses
- How to calculate relief valve backpressure
- How to size flare knockout drums
- How to calculate flare stack height based on radiation limits
- flare gas recovery systems
- Ignition systems available
- Advantages of using dynamic simulation for calculating relief loads

COURSE CONTENT
- Overview of typical relief and flare systems and key components
- Codes and standards as well as good practices typical in oil and gas facilities
- Safety implications and causes of overpressure • Overpressure protection philosophy including source isolation and relief
- Determination of relief requirements and defining setpoint pressures • Types, applications, and sizing of common relief devices • Blowdown/depressurizing - purpose and design/operational considerations • Design and specification considerations for relief valves and header systems, including fluid characteristics, services conditions, material selection, and header sizing • Environmental considerations • Radiation calculations and the impact of flare to design • Selection and sizing of key components: knockout and seal drums, vent/flare stack, vent/flare tips, and flare ignition systems • Defining need and quantity of purge gas • Flare gas recovery, smokeless flaring, and purge gas conservation • Operational and troubleshooting tips • The use of dynamic simulations to determine relief loads

Relief and Flare Systems – PF44

INTERMEDIATE 5-DAY

This intensive course provides a comprehensive overview of relief and flare systems for oil and gas processing facilities. The course begins with the need for pressure control/overpressure protection, and the importance of the key engineering and design aspects including code considerations, and concludes with selecting and sizing the components of a relief and flare system. The material of the course is applicable to onshore field production facilities, pipelines, gas plants, terminals, refineries, and offshore production facilities. The use of dynamic simulations for relief load determination is discussed and demonstrated.

DESIGNED FOR
Engineers responsible for designing, operating, and maintaining relief and flare systems in oil and gas facilities.
Process Facilities

Offshore Gas Gathering Systems: Design and Operations – PF45

INTERMEDIATE – 5-DAY

This course deals with the design, operation, and optimization of offshore gas gathering systems and their associated field facilities, from the wellhead to the central gas processing facility. From a design perspective, the main variables that impact the flexibility and operational characteristics of an offshore gas gathering system will be discussed. Typical operational problems are covered including hydrates, multiphase flow issues, corrosion, declining well deliverability, etc. Exercises will be utilized throughout the course to emphasize the key learning points.

DESIGNED FOR
Production and facilities department engineers/ senior operating personnel responsible for the design, operation and optimization of offshore gas gathering systems and their associated field facilities.

YOU WILL LEARN
- The impact of gathering system pressure on gas well deliverability
- The impact of produced fluids composition on gathering system design and operation
- How to evaluate field facility and gathering system configurations for different applications
- To recognize and develop solutions to operating problems with existing gas gathering systems

COURSE CONTENT
Gas well inflow performance and deliverability
- Overview of gas well deplugging methods for low-rate, low pressure gas wells
- Effect of gathering system/abandonment pressure on reserves recovery
- Impact of produced fluids composition
- Sweet/sour
- CO2 content
- Rich/off
- Produced water
- Hydrates and hydrate prevention
- Dehydration
- Heating
- Chemical inhibition
- Multiphase flow basics
- Corrosion/materials selection
- Gathering system layout
- Website/facilities options
- Provisions for future compression

Troubleshooting Gas Processing Facilities – PF49G

INTERMEDIATE – 5-DAY

This course will cover how to establish and apply a general troubleshooting methodology as well as how to conduct process/equipment specific troubleshooting related to gas production and processing facilities. Definitions of good/non-normal performance will be discussed for each process/equipment type covered. Data gathering, validation and utilization procedures will be discussed. Criteria to use when evaluating possible problem solutions will also be covered. Real-world exercises will be utilized throughout the course to reinforce the learning objectives. Both onshore and offshore facilities will be discussed. It is assumed that course participants have a solid understanding of how typical gas production and processing facilities work, including the commonly used processes and equipment involved. This course will not provide in-depth coverage of fundamentals.

DESIGNED FOR
Process/Facilities engineers with 5-10 years of experience, facilities engineering team leaders/supervisors, and senior facilities operational personnel.

YOU WILL LEARN
- The difference between troubleshooting, optimization, and debottlenecking
- How to recognize trouble when it is occurring
- How to develop a methodical approach to troubleshooting
- To recognize how different components of a facility interact with each other, and the significance of these interactions
- How to gather, validate, and utilize the data needed for troubleshooting
- The criteria to be considered for identifying the best solution when several feasible solutions are available
- Typical causes of problems, and their solutions, for the main types of processes and equipment used in upstream/midstream gas production and processing operations

COURSE CONTENT
Understanding the similarities and differences between troubleshooting vs optimization vs debottlenecking
- Types of gas production and processing facilities
- System trouble vs component/equipment-specific trouble
- Defining good/non-normal operation
- Quantifying the cost of the trouble
- Gathering, validating, and utilization of data (types of data, sources of data, data quality and validation, using the data)
- Developing a step-by-step troubleshooting methodology/flowchart
- Identifying the best solution (criteria for defining best)
- Processing and major equipment modules covered include gas-liquid separation, gas sweetening (amine focus), glycol dehydration, molecular sieve dehydration, shell and tube heat exchangers, NGL recovery processes, fractionation facilities, reciprocating compressors, and centrifugal compressors

Troubleshooting Oil Processing Facilities – PF49O

INTERMEDIATE – 5-DAY

This course will cover how to establish and apply a general troubleshooting methodology as well as how to conduct process/equipment specific troubleshooting related to oil production and processing facilities. Definitions of good/non-normal performance will be discussed for each process/equipment type covered. Data gathering, validation and utilization procedures will be discussed. Criteria to use when evaluating possible problem solutions will also be covered. Real-world exercises will be utilized throughout the class to reinforce the learning objectives. Both onshore and offshore facilities will be discussed. It is assumed that course participants have a solid understanding of how typical oil production and processing facilities work, including the commonly used processes and equipment involved. This course will not provide in-depth coverage of fundamentals.

DESIGNED FOR
Process/Facilities engineers with 5-10 years of experience, facilities engineering team leaders/supervisors, and senior facilities operational personnel.

YOU WILL LEARN
- The difference between troubleshooting, optimization, and debottlenecking
- How to recognize trouble when it is occurring
- How to develop a methodical approach to troubleshooting
- To recognize how different components of a facility interact with each other, and the significance of these interactions
- How to gather, validate, and utilize the data needed for troubleshooting
- The criteria to be considered for identifying the best solution when several feasible solutions are available
- Typical causes of problems, and their solutions, for the main types of processes and equipment used in upstream/midstream oil production and processing operations

COURSE CONTENT
Understanding the similarities and differences between troubleshooting vs optimization vs debottlenecking
- Types of oil production and processing facilities
- System trouble vs component/equipment-specific trouble
- Defining good/non-normal operation
- Quantifying the cost of the trouble
- Gathering, validating, and utilization of data (types of data, sources of data, data quality and validation, using the data)
- Developing a step-by-step troubleshooting methodology/flowchart
- Identifying the best solution (criteria for defining best)
- Processing and major equipment modules covered include gas-liquid separation, oil-water separation, oil treating and desalting, oil stabilization and sweetening, oil storage and vapor recovery, produced water treatment, centrifugal pumps, and water injection

CO2 Surface Facilities – PF81

SPECIALIZED – 4-DAY FIELD TRIP

This course emphasizes the effect of carbon dioxide on the selection and operation of equipment (separators, compressors, and dehydrators), as well as sweetening process equipment. This program, first introduced in 1985, assists those working with carbon dioxide or high carbon dioxide content natural gas. This course is particularly applicable to those persons who operate and/or design enhanced oil recovery (EOR) facilities using CO2 as a miscible agent. Physical and thermodynamic property data for carbon dioxide/natural gas mixtures are discussed. Calculations are performed to illustrate principles and techniques. Midland is a four-day session including a CO2 plant tour on Thursday, contingent on plant availability.

DESIGNED FOR
Engineers and senior operating personnel involved with carbon dioxide/natural gas/CO2 EOR systems.

YOU WILL LEARN
- What to expect over the life of a CO2 EOR system
- Impact of CO2 on the design and operation of oil production equipment
- Physical and thermodynamic properties of pure CO2, and the impact of CO2 in hydrocarbon mixtures
- Dehydration of high CO2-content gases
- Best practices to deal with Dense Phase pipelines, metering, rating, etc.
- How to pump and compress CO2
- Using purification processes: membranes, Ryan-Holmes, amines, hot carbonate, etc.

COURSE CONTENT
Overview of CO2 injection and process facilities
- Heavy emphasis on CO2 for enhanced oil recovery
- Physical and thermodynamic properties of CO2 and high CO2 mixtures
- Materials selection and design consideration in CO2 systems
- Process vessel specification
- Pumps and compressors
- Fluid flow and special pipeline design considerations such as the control of ductile fractures
- Dehydration of CO2 and CO2-rich gases
- General overview of processes to treat/recover CO2

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calgary, CAN</td>
<td>27 APR-1 MAY</td>
<td>$4455+GST</td>
</tr>
<tr>
<td>Houston, US</td>
<td>12-16 OCT</td>
<td>$5670</td>
</tr>
<tr>
<td>London, UK</td>
<td>7-21 AUG</td>
<td>$5235+VAT</td>
</tr>
</tbody>
</table>

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dallas, US</td>
<td>13-17 JULY</td>
<td>$4655</td>
</tr>
<tr>
<td>Houston, US</td>
<td>30 MAR-3 APR</td>
<td>$4510</td>
</tr>
<tr>
<td>Kuala Lumpur, MYS</td>
<td>see website</td>
<td>$5670</td>
</tr>
<tr>
<td>London, UK</td>
<td>7-21 AUG</td>
<td>$5235+VAT</td>
</tr>
</tbody>
</table>

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medan, US</td>
<td>9-12 NOV</td>
<td>$4255</td>
</tr>
</tbody>
</table>

† Includes field trip

Any course is available in-house at your location. Contact us today.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
Instrumentation, Controls and Electrical Systems Overview for Non-Electrical Engineers – ICE21

This basic level course provides an introduction and overview of electrical systems, instrumentation, process control, and control/safety systems typically encountered in oil and gas facilities. The focus is to understand terminology, concepts, typical equipment configurations, and common pitfalls in order to improve communication with electrical and I&C professionals. This course covers fundamental content to our E3 and IC3 courses, but at a more conceptual level. This course is not a prerequisite for taking E3 or IC3, but rather a replacement for those that are not able to take both E3 and IC3.

DESIGNED FOR
- Process, chemical, and mechanical engineers, (i.e. non-instrumentation and non-electrical disciplines), as well as other technical and non-technical professionals with little or no background in I&C systems.
- Electrical and Instrumentation Engineers should consider E3 and IC3 for more in-depth coverage.

YOU WILL LEARN
- Fundamentals of electricity, such as voltage, current, resistance, power factor, and single/three phase power systems.
- Electrical specifications, such as voltage selection, load lists, and power.
- How to read one-line diagrams and understand the function of the components of power distribution, including transformers, switchgear, MCCs, VFDs, and power distribution.
- The function and considerations of infrastructure components, such as cable, conduit, cable tray, and duct banks.
- Awareness of the concepts behind classification of hazardous locations and equipment specifications.
- Safety risks and mitigation strategies for power systems, including short circuit and overcurrent protection, ground faults, shock hazards, and arc flash.
- Fundamentals of control systems, sensors, controllers, and final elements.
- Key requirements for instrument specifications such as accuracy, signal selection, process conditions, material compatibility, installation considerations, capabilities and limits, and relative cost.
- Basics of specification of shutdown and control valves.
- Control system functions, limitations, and architectures, including PLC, DCS, SIS, RTU, and SCADA; common networking systems, including Ethernet, Modbus and Fieldbus.
- Exposure to the typical documentation and drawings necessary for the design, specification, installation, operation and maintenance of electrical, instrumentation and control systems.

COURSE CONTENT
- Fundamentals of electricity • Control system fundamentals • Field measurement and control devices • Hazardous area classification for oil and gas applications • Programmable electronic systems (PLC, DCS, SIS, SCADA) • and more...

Electrical Engineering Fundamentals for Facilities Engineers – E3

FOUNDATION 5-DAY

This course applies fundamental electrical engineering principles to oil and gas facilities.

COURSE CONTENT
- Fundamentals of electricity including voltage, current, resistance, power, inductance, capacitance, and power factor.
- The key components of facilities electric power distribution, which include circuit arrangements, low and medium voltage switching, and single-phase and three-phase distribution schemes.
- Transformer operation, components, turns and voltage ratios, losses, efficiency, rating, and connections.
- The difference between direct current, induction and synchronous current motors, motor enclosures, and how to select, start, protect, and control motors.
- The principles of protecting electrical equipment, including time-current curves, fuses, circuit breakers, and coordination.
- The purposes and sizing criteria for backup power, including generators and UPS power systems.
- The considerations and sizing criteria for on-site power generation, which includes standby, prime, peak, and co-generation.
- What grounding and bonding systems are, with an overview of ignition sources, shock protection and separately derived systems, and substation grounding.
- The concepts, terminology and application of hazardous area classification standards, equipment protection methods, and installation requirements for NEC and IEC projects.
- Fundamentals of insulation and conduction • Direct current, alternating current • Transformers power and instrument • Motors induction and synchronous • Power distribution system • Protection coordination and standby power systems • Power generation • Variable speed drive principles • Grounding, bonding, and electrical safety • Hazardous area identification.

2020 Schedule and Tuition (USD)

HOUSTON, US
- 11-15 MAY $4310
- 30 Nov-4 DEC $4310

KUALA LUMPUR, MYS
- 3-7 AUG $5470

LONDON, UK
- 30 MAR-3 APR $5035+VAT

Instrumentation and Controls Fundamentals for Facilities Engineers – IC3

FOUNDATION 5-DAY

This course applies fundamental instrumentation and control engineering principles to oil and gas facilities design and operation, and is designed to accelerate the development of new Facilities Instrumentation and Control Engineers. Through the use of individual and group problem solving, attendees will learn about field measurement devices, valves and actuators, documentation, programmable logic controllers, power supplies, PLC, SCADA, DCS, SIS, hazardous areas, and installation methods. This course is a more in-depth version of the content of ICE21 and ICE21 is not a prerequisite for taking this course.

COURSE CONTENT
- Operating principals and specification criteria for field measurement devices including level, pressure, temperature, and flow.
- Final elements and actuators including control loops, control valves, shutdown valves, actuators, and transducers.
- PID and control loops and instrumentation loops, design logic and diagrams, pitfalls and best practices.
- ISA symbology, and calibration of instrument and I/O lists.
- Signal types and wiring requirements for analog/digital inputs and outputs as well as other signals such as thermocouple, RTD, pulse, and digital communications.
- Typical control system functions, limitations, and architectures for PLC and DCS systems including programming methods such as ladder logic and function block.
- Process control basics with an emphasis on control loops, types, and configurations for common oil and gas process equipment such as separators, pumps, distillation towers, filters, contactors, compressors, heat exchangers, and fired heaters.
- Understanding of the PID algorithm, loop tuning, and advanced process control techniques such as feed forward, cascade, selectivity, and ratio control.
- Supervisory Control and Data Acquisition (SCADA) Systems to include telemetry, RTUs, internet, and web based communications.
- Common networking systems including Ethernet, Modbus, and Fieldbus.
- Risk mitigation, technologies, and architecture of Safety Instrumented Systems (SIS).
- The concepts, terminology, and application of hazardous area classification standards, equipment protection methods, and installation requirements for NEC and IEC projects.
- Fundamentals of control signals and wiring • Control system basics • and more...

COURSE CONTENT

- Flow of liquid and custody measurement.
- Flow measurement • Turbine • Positive displacement • Ultrasonic flowmeters • Coriolis mass flowmeters • Level measurement • Honeywell tape systems • Hydrostatic pressure • Ultrasonic measurement.
- Radar measurement • Flow calibration • Terminal custody transfer • Tank management systems • Lease automatic custody transfer • Truck and rail custody transfer • Pipeline considerations.
- Fugitive emissions • Leak detection • Real time transient model • Loss control systems • Custody transfer sampling • Monitoring and controlling production losses.
- Physical leaks • Meter prove performance • API standards • Measuring the suspended S&W content • Calculating net volume • Flowmeter selection and costs • Initial considerations.
- Meter selection • Properties and maintenance of NGL, LPG, and LNG.

Flow and Level Custody Measurement – IC73

INTERMEDIATE 5-DAY

This course is designed to acquaint users with the problems and solutions for high accuracy transfer of liquid and gas petroleum products from supplier to customer. These needs have been brought about by major changes in manufacturing processes and because of several dramatic circumstantial changes such as: the increase in the cost of fuel and raw materials; the need to minimize pollution; and the increasing pressures being brought to bear to adhere to the requirements for health and safety.

COURSE CONTENT
- Design and construction of custody transfer systems.
- Custody transfer systems • Lease automatic custody transfer • Truck and rail custody transfer • Pipeline considerations.
- Fugitive emissions • Leak detection • Real time transient model • Loss control systems • Custody transfer sampling • Monitoring and controlling production losses.
- Physical leaks • Meter prove performance • API standards • Measuring the suspended S&W content • Calculating net volume • Flowmeter selection and costs • Initial considerations.
- Meter selection • Properties and maintenance of NGL, LPG, and LNG.

2020 Schedule and Tuition (USD)

HOUSTON, US
- 13-17 JULY $4405
- 2-6 MAR $4410
- 26 NOV-4 DEC $5135+VAT

DENVER, US
- 13-17 JULY $4405
- 2-6 MAR $4410
- 26 NOV-4 DEC $5135+VAT

LONDON, UK
- 2-6 NOV $5135+VAT

Any course is available in-house at your location. Contact us today.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
Practical PID Control and Loop Tuning – IC74

INTERMEDIATE 5-DAY

This workshop provides instrumentation, automation, and process engineers with the basic theoretical and practical understanding of regulatory control systems and how this can be applied to optimize process control in terms of quality, safety, flexibility, and costs. Centered on the ISA-recommended PC-Control LAB simulator, participants will learn through active participation using exercises, questionnaires, and a series of 16 practical simulation sessions covering: process reaction; tuning methods; diagnostic tools; effect of different algorithms; surge tank level control; analysis of such problems as valve hysteresis, stiction and non-linearities and the impact on controllability; and integral windup.

DESIGNED FOR
Instrumentation, automation, and process engineers and technicians involved in specifying, installing, testing, tuning, operating, and maintaining regulatory PID control systems.

YOU WILL LEARN HOW TO
• Describe such terms as process lag, capacitance, and resistance
• Explain the significance of the process reaction curve
• Identify the effects of filtering on loop performance
• Distinguish the effect of span on the system performance
• Analyze such problems as valve hysteresis, stiction, and non-linearities
• Evaluate the effects of proportional, integral, and derivative control
• Correctly apply both open and closed Loop tuning according to Ziegler-Nichols
• Apply “as found” tuning
• Estimate the effects on loop tuning using a software-based loop analysis program
• Describe both cascade and feedforward control
• Explain split range control
• Identify and correct problems due to process dead time
• Discuss the top 20 mistakes made in the field of process control

COURSE CONTENT
Basic process considerations • Process lag, capacitance, and resistance • Process reaction curve • 1st and 2nd order reactions • Instrumentation cabling • Filtering • Aliasing • Reaction masking • Sensor placement • Correct PV • Effect of span • Inherent and installed valve characteristics • Actuators • Valve positioners • Testing procedures and analysis • ON/OFF control • Proportional control • Proportional offset • Reset • Integral action and windup • Stability • Derivative action • PID control • Control algorithms • Load disturbances and offset • Speed, stability, and robustness • Open loop reaction curve tuning method (Ziegler-Nichols) • Default and typical settings • Closed loop continuous cycling tuning method (Ziegler-Nichols) • Fine tuning • “As found” tuning • Surge tank level control • Split-parallel range control • Cascade systems • Feed-forward and combined systems • Ratio control • System integration

Knowledge gaps in your workforce equal risk.
Minimize risks to safety, production, and compliance!

Knowledge gaps in your workforce equal risk.
Minimize risks to safety, production, and compliance!
Minimize risks to safety, production, and compliance!
ePilot identifies gaps and transfers the knowledge required on demand.

ePilot™

ONLINE GAS PROCESSING OPERATIONS LIBRARY

We have worked with industry SMEs to identify all knowledge requirements specific to gas processing operations. Applying proven instructional design methods and advanced web technology creates an effective learning solution that delves deep into gas processing equipment and operations. This library of e-learning courses incorporates critical information for operations, systems, equipment, instruments, fundamentals and process safety in a sustainable environment that is available online, anytime and anywhere, to develop and maintain a highly skilled workforce.

This online training solution provides the fundamentals as well as in-depth coverage of gas processing to help develop a highly qualified workforce to maintain operating efficiency and a safe working facility.

Topics include:
• Introduction to Gas Processing
• Gas Processing Thermodynamics
• Turbo Expansion
• Fractionation
• Solid Bed Adsorption
• Amine Sweetening Process
• Gas Processing Hazards

2020 Schedule and Tuition (USD)
HOUSTON, US 14-18 DEC $4510
* plus computer charge

For more information, please visit www.petroskills.com/elearning
or email solutions@petroskills.com
This comprehensive course will cover the main causes of corrosion in upstream oil and gas operations, as well as monitoring and mitigation methods. The various corrosion mechanisms give rise to a number of different forms of corrosion damage, which will all be considered. Participants will learn about the different aspects that make fluid corrosive, what enhances corrosion rates and how to estimate corrosion rates of a given environment through analysis of the chemical and physical characteristics of the system; review approaches to selecting materials and coatings for corrosion resistance for different conditions and applications (including the use of NACE MR0175/ISO 15156); and be introduced to cathodic protection systems and (CP) surveys, coating systems, and many other corrosion mitigation techniques. The participant will learn how to select and utilize corrosion inhibitors for different systems, and how to select and apply corrosion monitoring techniques to create an integrated monitoring program. The course content is based on a field facilities engineering point of view, as opposed to a more narrowly-specialized corrosion engineering or chemistry viewpoint. It provides an appropriate balance of necessary theory and practical applications to solve/mitigate corrosion-related problems.

DESIGNED FOR
Managers, engineers, chemists, and operators who need to understand corrosion and its control management in oil and gas production and processing.

YOU WILL LEARN
- The basics of corrosion chemistry
- The main corrosion mechanisms occurring in oil and gas production/processing systems
- The different types of damage caused by corrosion
- Materials selection for corrosion prevention
- Some methods for conducting cathodic protection (CP) surveys
- Items to consider in corrosion inhibitor selection
- Key advantages and disadvantages of the various corrosion monitoring methods
- Where the main locations of corrosion concern occur within oil production systems, gas processing facilities (including amine units), and water injection systems
- The principles of managing corrosion and the architecture of corrosion/integrity management systems

COURSE CONTENT
Fundamentals of corrosion theory • Major causes of corrosion (O₂, CO₂, H₂S, microbiologically influenced corrosion) • Forms of corrosion damage • Materials selection • Protective coatings and linings • Cathodic protection • Corrosion inhibitors • Corrosion monitoring and inspection • Corrosion in gas processing facilities • Corrosion in water injection systems • Corrosion management strategy and life-cycle costs

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Start Date</th>
<th>Tuition (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON, US</td>
<td>9-13 MAR</td>
<td>$5570</td>
</tr>
<tr>
<td>HO CHI MINH CITY, VN</td>
<td>17-21 AUG</td>
<td>$5650*</td>
</tr>
<tr>
<td>HO CHI MINH CITY, VN</td>
<td>20-24 JULY</td>
<td>$5795</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>6-10 APR</td>
<td>$5795</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>10-13 JULY</td>
<td>$6195</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>30 AUG-3 SEP</td>
<td>$6795*</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>13-17 JULY</td>
<td>$7295*</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>17-21 AUG</td>
<td>$4455</td>
</tr>
</tbody>
</table>
Mechanical Specification of Pressure Vessels and Heat Exchangers – ME43
INTERMEDIATE 5-DAY

FIELD TRIP

This 5-day, intermediate level course for facility engineers and project engineers reviews the key areas associated with the mechanical design of pressure vessels and heat exchangers for oil and gas facilities. The course is focused on vessels, heat exchangers built in accordance to ASME VIII Div 1, considering material selection, key design calculations, and manufacturing processes. The course is not aimed at process engineers sizing equipment (PF-42 covers these elements), although a brief review of the sizing correlations is included. The course is delivered from the perspective of a vessel fabricator to better understand the dos and don’ts of ideal mechanical specification of pressurized equipment by owner/operators, in order to optimize material utilization and minimize construction costs. The Houston session features an afternoon field trip to a large pressure vessel fabricator.

DESIGNED FOR
Mechanical, facilities, construction, or project engineers and plant piping/vessel designers who are involved in the specification and purchasing of pressure vessels, heat exchangers, and other pressure-containing equipment for oil and gas facilities.

YOU WILL LEARN
• About ASME B&PV code and the commonly used sections related to oil and gas equipment
• To specify correct and commonly used materials according to ASME II
• How to design vessel shells, heads, nozzles, and heat exchanger details
• How to provide accurate equipment specification documents and review documentation for code compliance
• Key fabrication processes used in the workshop and how to simplify construction through correct vessel specification
• About welding processes and inspection requirements per ASME IX

COURSE CONTENT
Vessel codes and standards (ASME B&PV Code, TEMA, API) • Vessel material selection, corrosion mechanisms, heat treatment, and basic metallurgy • Essential design calculations for vessels and heat exchangers • Welding process overview and inspection requirements • Constructability and operability considerations • Vessel integrity, evaluation, and re-purposing of pressure-containing equipment according to API/ASME

Fundamentals of Pump and Compressor Systems – ME44
INTERMEDIATE 5-DAY

This is an intensive 5-day course providing a comprehensive overview of pumps and compressor systems. The focus is on equipment selection; type, unit, and station configuration; and integration of these units in the process scheme and control strategy in upstream and midstream oil and gas facilities. The material of the course is applicable to field production facilities, pipelines, gas plants, and offshore systems.

DESIGNED FOR
Engineers, junior technicians, and system operators designing, operating, and maintaining pump and compressor systems in oil and gas facilities.

YOU WILL LEARN
• Selecting the appropriate integrated pump and compressors units (drivers, pumps, compressors, and auxiliary systems)
• Integrating the pump or compressor units with the upstream and downstream piping and process equipment
• Evaluating pump and compressor units and their drivers in multiple train configurations, parallel and series
• Identifying the key local and remote control elements of pumps and compressors as well as their drivers
• Defining the major life-cycle events, such as changes in flows, fluid composition, and operating conditions that can affect equipment selection and operating strategies
• Assessing the key pump hydraulics and compressor thermodynamics, and their effect on selection and operations
• Identifying significant operating conditioning monitoring parameters and troubleshooting techniques

COURSE CONTENT
Types of pumps, compressors, and drivers, and their common applications and range of operations • Evaluation and selection of pumps and compressors, and their drivers for long-term efficient operations • Unit and station configuration including multiple trains in series and/or parallel operations • Integration with upstream and downstream process equipment, local and remote control systems, and facilities utilities • Key auxiliary systems including monitoring equipment, heat exchangers, lube and seal systems, and fuel/power systems • Major design, installation, operating, troubleshooting, and maintenance considerations

PLANNING A MEETING?
You plan the agenda
We’ll handle the rest

PETROSKILLS CONFERENCE CENTER

Located in the Houston area, we are available to host your next meeting, in addition to the many PetroSkills training sessions we hold here each year.

Conference Center Amenities:
• 10 classrooms
• 2 rooms with virtual accessibility
• Concierge and support staff
• State-of-the-art audio-visual
• High-speed wireless internet
• On-site technical support
• Break area and courtyard
• Complimentary parking

Conveniently located near:
• Quality hotels and accommodations
• Shopping, restaurants and entertainment
• Medical facilities

25403 KATY MILLS PARKWAY
KATY, TEXAS 77494
+1.832.426.1200

petroskills.com/pc

Any course is available in-house at your location. Contact us today.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
Midstream Operations and Pipeline e-Learning Library

ePilot™

This library extends technical skill fundamentals into midstream specific concepts.

Topics include:

- Storage Tanks
- Pipeline Fundamentals
- Condensate Stabilization System
- Dewpoint Testing
- Fractionation Distillation Process Fundamentals
- Hydrocarbons
- Pigging Operations
- Purging with Nitrogen
- Salt Caverns and Underground Storage
- Solid Desiccants
- Tower Fouling and Corrosion Cleaning
- and more...

Onshore Pipeline Facilities - Design, Construction and Operations – PL42

FOUNDATION 5-DAY

Successful onshore pipeline businesses require personnel competent in fully integrated approaches to evaluation, planning, design, construction, operations, and asset integrity management. This intensive, 5-day foundation level course explores best practices for developing and maintaining pipeline systems that maximize life cycle reliability; employee, public, and environmental safety; and cost effectiveness. Design and team exercises are an integral part of this course.

DESIGNED FOR

Pipeline project managers and engineers, operations and maintenance supervisors, regulatory compliance personnel, and other technical professionals with 1-3 years of experience in natural gas, crude oil, refined petroleum products, LPGs, NGL, chemical, carbon dioxide pipeline engineering, construction, operations, or maintenance. This course is intended for participants needing a broad understanding of the planning, development, construction, start-up, and operating and asset integrity management of onshore pipelines.

YOU WILL LEARN HOW TO

- Apply regulatory codes, standards, and industry guidelines (API and others) that control and guide the permitting, design, construction, operation, and maintenance of pipeline facilities
- Apply mechanical and physical principles to pipeline design, hydraulics, and material selection
- Apply mechanical and physical principles to pump and compressor selection
- Describe the important factors in station design
- Describe the importance of route selection and hydraulics for long term profitability, reliability, and safety
- Identify special design and construction challenges of onshore pipeline systems
- Apply operational and maintenance tools and procedures, including system monitoring and control, leak detection, corrosion control, custody measurement and quality control, asset integrity management, and emergency response planning

COURSE CONTENT

- Regulations and code compliance requirements
- Pipeline survey and routing
- Mechanical and hydraulic design
- System operation and maintenance
- Construction site problems
- Construction methods and contracting approaches
- Operations and asset integrity management

Offshore Pipeline Design and Construction – PL43

FOUNDATION 5-DAY

This intensive 5-day foundation level course covers the principal aspects of design, construction, and operations of offshore pipeline systems. The course focuses on pipeline mechanical, strength, and stability design, and construction. Special challenges, such as shoreline crossings, offshore pipeline crossings, repair methods, flow assurance, corrosion control and cathodic protection are an integral part of this course. Participants will acquire the essential knowledge and skills to design, construct, and operate pipelines. Design problems and team projects are part of this course.

DESIGNED FOR

Engineers, designers and operators who are actively involved in the design, specification, construction, and operation of offshore pipeline systems.

YOU WILL LEARN HOW TO

- Apply mechanical, strength, and physical principles to pipeline design, material selection, and construction candidates, design, and operation
- Describe the key construction methods
- Define the importance of environmental conditions, construction methods, and pipeline system hydraulics in design, installation, and operation of offshore pipeline systems
- Identify specific design and construction challenges of offshore pipeline systems
- Incorporate construction methods into the design of a pipeline system
- Identify the principal interfaces of pipeline facilities, such as platforms, floating production systems, sub-sea wellheads, and SPMs on design, construction, and operations of offshore pipeline systems
- Identify offshore safety and environmental practices and their effect on design, construction, and operations

COURSE CONTENT

- Overview of oil and gas transportation systems
- Review pipeline hydraulics, focusing on those aspects that affect design, construction, and operations
- Pipeline systems definition, survey, and route selection
- Safety, environmental, and regulatory considerations, focusing on Codes and Standards related to pipelines
- Pipeline conceptual and mechanical design for strength, stability, and constructability
- Pipeline materials and components selection including line pipe, corrosion and cathodic protection, and coatings
- Specialized equipment and materials for integrating with subsea wellhead/manifold systems, side taps, insulation, and pipe-in-pipe
- Safety, quality control, system reliability, and availability concerns

Terminals and Storage Facilities – PL44

FOUNDATION 5-DAY

This 5-day, foundation level course reviews key issues associated with development, design, construction, and operation of terminals and storage facilities for liquid hydrocarbons and NGLs. The course covers the principal aspects of design, construction, and operation of terminals and storage facilities. Participants will acquire the essential knowledge and skills to design, construct, and operate terminals and storage facilities. The course is intended for participants needing a broad understanding of the planning, design, construction, operation, and maintenance of storage and terminals connected to pipelines, rail, barges/tankers and/or truck loading facilities.

DESIGNED FOR

- Project managers, engineers, operations and maintenance supervisors, and regulatory compliance personnel with 1-3 years of experience in planning, engineering, constructing and/or operating terminals and storage facilities for hydrocarbon liquids, NGLs, and petrochemical feedstocks.
- Project managers, engineers, operations and maintenance supervisors, and regulatory compliance personnel with 1-3 years of experience in planning, engineering, constructing and/or operating terminals and storage facilities for hydrocarbon liquids, NGLs, and petrochemical feedstocks.

YOU WILL LEARN HOW TO

- Storage and terminals basics for hydrocarbon liquids, NGLs, and petrochemical feedstocks
- Design and operation of atmospheric storage tanks and pressurized butted and spheres
- Fundamentals of underground storage (salt and rock caverns)
- Safety, product quality, and regulatory/availability concerns

COURSE CONTENT

- Sizing criteria and economics for storage and terminal facilities
- Various storage types (atmospheric storage tanks, pressure vessels, salt or rock caverns) and appropriate applications
- Terminal and tank farm layout constraints
- Details of industry codes and standards, plus regulatory and environmental compliance
- Selection of equipment for delivery and receipt to/from pipelines, barges and ships, trucks, and rail, including metering options, loading arms, pumps, and control systems
- Blending options and equipment, VRU/VCU, water treating, and fire protection
- Key factors affecting safety, product quality, system reliability, and profitability in design, construction, and operations
- Atmospheric storage tank design, layout, construction, corrosion prevention, and operations covering API 650 and API 602
- Overview of pressure vessel and sphere design and construction
- Design, development, and operation of underground cavern storage facilities

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBAI, UAE</td>
<td>6-10 SEP</td>
<td>$5500 + VAT</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>27 APR - 1 MAY</td>
<td>$4410</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>KUALA LUMPUR, MY</td>
<td>12-16 OCT</td>
<td>$5570</td>
</tr>
<tr>
<td>5-9 OCT</td>
<td>$4410</td>
<td></td>
</tr>
</tbody>
</table>

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBAI, UAE</td>
<td>22-26 NOV</td>
<td>$5500 + VAT</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>1-5 JUNE</td>
<td>$4410</td>
</tr>
</tbody>
</table>

Any course is available in-house at your location. Contact us today.
Overview of Offshore Systems – OS21

BASIC 5-DAY

This five-day course will accelerate the learning and productivity of individuals with little to no experience working in the offshore oil and gas industry. The course provides an overview of field development concepts and explains how offshore structures and facilities function as integrated systems. The content includes the full range of water depths from shallow water to ultra-deepwater. All major components required for offshore developments such as fixed and floating platforms, drilling and workover rigs, pipelines, risers, process and utilities and construction equipment are discussed. The importance of life-cycle considerations during development planning is emphasized. Individual and group exercises, including a case study, are used throughout the course. The course instructors are experienced offshore managers.

DESIGNED FOR

Technical staff, business professionals, technicians, analysts and other non-technical staff who are involved but have limited experience, or will be involved, with offshore oil and gas facilities.

YOU WILL LEARN HOW TO

- Identify the steps in the design of offshore fields from discovery through decommissioning.
- Understand the methods of field architecture to define a workable field development.
- Recognize key stakeholder issues.
- Recognize offshore production facilities and structures, fixed and floating.
- Understand the effects of the ocean environment on facilities design and operations
- Identify major design, construction, and operational issues and interfaces of offshore systems.
- Recognize important forces on offshore structures and their influence on design and cost.
- Understand strategic options for well drilling (construction) and servicing.
- Appreciate the basic processes and equipment involved in the topsides design and operation.
- Understand fluid transportation options and equipment.
- Recognize the marine environment used in the construction of offshore facilities.
- Understand basic issues in life-cycle and decommissioning decisions.
- Appreciate advances in offshore technology.

COURSE CONTENT

Field development concepts, fixed and floating
- Subsea systems
- Wells, construction and servicing
- Topsides facilities; processing
- Oil and gas transportation systems
- Design and installation
- Production operations
- Offshore construction equipment
- Fabrication, transportation, integration, installation project management
- Life-cycle considerations, including decommissioning

Overview of Subsea Systems – SS2

BASIC 5-DAY

An overview of subsea components and how they are integrated into field architecture is provided during this five-day course. Individuals will develop a basic understanding of the various subsea components used in all water depths, from shallow water to ultra-deep water. The participants’ job productivity will be accelerated by learning how the components are combined and integrated into subsea field developments. Installation and flow assurance are emphasized as key drivers in subsea design. The course emphasizes a systems approach to design. Individual and group exercises are used throughout the course, including a case study to develop field architecture recommendations, basic component selection, and high level project execution plans for a subsea development. Course instructors are experienced offshore managers.

DESIGNED FOR

Technical staff who are beginning or transitioning into the design, construction, and operation of subsea systems. Non-technical staff working with a subsea development team will benefit by developing an awareness of subsea systems.

YOU WILL LEARN HOW TO

- Recognize the integrated nature of field architecture, system design, and component selection.
- Identify appropriate applications for subsea systems.
- Identify the main subsea components, their functions, strengths, weaknesses, and interfaces from the well to the production facility.
- Understand key design, construction, and installation issues.
- Describe basic operations and maintenance considerations.
- Understand the steps, from drilling through startup, for the design, fabrication, testing, installation, and operation.
- Understand the importance of an integrated approach to design, flow assurance, installation, and life-cycle considerations.

COURSE CONTENT

Applications for subsea systems
- Flow assurance considerations in system design and configuration
- Field architecture considerations
- Subsea component descriptions and functions
- Fabrication, testing, installation, commissioning, and operational issues
- Production, maintenance, and repair considerations

Fundamentals of Offshore Systems Design and Construction – OS4

FOUNDATION 10-DAY

This 10-day course provides a fundamental understanding of the technology and work processes used for the design and construction of all types of offshore systems, including consideration of asset development, surveillance, and management. The content includes the full range of water depths from shallow water to ultra-deep water and addresses life-cycle considerations in all phases of offshore field development and operation. All major components required for offshore developments, such as fixed and floating platforms, drilling rigs, workover equipment, pipelines, risers, process, and utilities and construction equipment are discussed. Emphasis is placed on the multi-discipline team approach needed to manage the myriad of interfaces of offshore facility design, construction, and operations. Individual and group exercises are used throughout the course. A case study for an offshore project development is included.

DESIGNED FOR

Individuals with a basic awareness of or experience in offshore engineering and operations. Technical staff, project engineers, engineering discipline leads, engineering specialists, and operating staff find that this course accelerates their capability to contribute on offshore field development planning, design, and construction projects and field operations.

YOU WILL LEARN HOW TO

- Identify the key facilities parameters that drive field development.
- Recognize the best applications and characteristics of each type of offshore fixed and floating structure.
- Understand the effects of the ocean environment on facilities design, construction, and operations.
- Identify the impact space, loads and forces have on the structural design and global performance of offshore structures and their influence on development cost.
- Describe the impact of topside facilities (well construction, well servicing, processing, and utilities) on the design of the supporting structure, together with an outline of the topsides design process.
- Recognize and manage key design and operational interfaces between the major components of offshore facilities systems.
- Understand the key design, construction, and installation issues associated with fixed and floating platforms and how to apply the lessons learned to your work.

COURSE CONTENT

- Offshore systems overview and field architecture selection
- Well construction and servicing equipment and operation
- Flow assurance
- Topsides facilities
- Oil and gas transportation facilities
- Riser systems
- Subsea systems
- Production operations
- The infrastructure impact on design and operations
- Effects of the ocean environment
- Introduction to naval architecture
- Structural design processes and tools
- Construction plans and execution
- and more...

Flow Assurance for Offshore Production – FAOP

INTERMEDIATE 5-DAY

Flow assurance is a critical component in the design and operation of offshore production facilities. This is particularly true as the industry goes to deeper water, longer tiebacks, deeper wells, and higher temperature and pressure reservoirs. Although gas hydrate issues dominate the thermohydraulic design, waxes, asphalten, emulsions, scale, corrosion, erosion, solids transport, slugging, and operability are all important issues which require considerable effort. The participant will be presented with sufficient theory/correlation information to be able to understand the basis for the applications. This intensive five-day course has considerable time devoted to application and design exercises to ensure the practical applications are learned.

DESIGNED FOR

Engineers, operators, and technical managers who are responsible for offshore completions, production, and development; technical staff needing a foundation in principles, challenges, and solutions for offshore flow assurance. The course is also appropriate for persons involved in produced fluids flow in onshore production operations.

YOU WILL LEARN HOW TO

- Identify the components of a complete flow assurance study and understand how they relate to the production system design and operation.
- Interpret and use sampling and laboratory testing results of reservoir fluids relative to flow assurance.
- Understand the basic properties of reservoir fluids and how they are modeled for the production flow assurance system.
- Understand the thermohydraulic modeling of steady state and transient multiphase flow in offshore production systems.
- Evaluate and compare mitigation and remediation techniques for: gas hydrates, paraffin (waxes), asphaltene, emulsions, scale, corrosion, erosion, solids transport, and slugging.
- Understand the elements of an operability report for subsea production facilities, flowlines, and export flowlines.

COURSE CONTENT

Overview of flow assurance
- PVT analysis and fluid properties
- Steady state and transient multiphase flow modeling
- Hydrate, paraffin, and asphaltene control
- Basic of scale, corrosion, erosion, and sand control
- Fluid property and phase behavior modeling
- Equations of state
- Fugacity and equilibrium
- Viscosities of oils
- Thermal modeling
- Multiphase pressure boosting
- Slugging: hydrodynamic, terrain induced, and ramp up
- Commissioning, start-up, and shutdown operations

2020 Schedule and Tuition (USD)

BLACKPOOL, UK

<table>
<thead>
<tr>
<th>Course</th>
<th>Start Date</th>
<th>End Date</th>
<th>Location</th>
<th>Fee</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERSEAS & SUBSEA</td>
<td>18-22 MAY</td>
<td>3-7 AUG</td>
<td>LONDON, UK</td>
<td>$5055+VAT</td>
<td>$4310</td>
</tr>
</tbody>
</table>

LONDON, UK

<table>
<thead>
<tr>
<th>Course</th>
<th>Start Date</th>
<th>End Date</th>
<th>Location</th>
<th>Fee</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERSEAS & SUBSEA</td>
<td>18-22 MAY</td>
<td>3-7 AUG</td>
<td>LONDON, UK</td>
<td>$5055+VAT</td>
<td>$4310</td>
</tr>
</tbody>
</table>

HOUSTON, US

<table>
<thead>
<tr>
<th>Course</th>
<th>Start Date</th>
<th>End Date</th>
<th>Location</th>
<th>Fee</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERSEAS & SUBSEA</td>
<td>23-27 MAR</td>
<td>20-24 JUL</td>
<td>LONDON, UK</td>
<td>$5055+VAT</td>
<td>$4310</td>
</tr>
<tr>
<td>OVERSEAS & SUBSEA</td>
<td>23-27 MAR</td>
<td>20-24 JUL</td>
<td>SINGAPORE</td>
<td>$5470</td>
<td></td>
</tr>
</tbody>
</table>

SINGAPORE

<table>
<thead>
<tr>
<th>Course</th>
<th>Start Date</th>
<th>End Date</th>
<th>Location</th>
<th>Fee</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERSEAS & SUBSEA</td>
<td>31 AUG-4 SEP</td>
<td>20-24 JUL</td>
<td>LONDON, UK</td>
<td>$5055+VAT</td>
<td>$4310</td>
</tr>
<tr>
<td>OVERSEAS & SUBSEA</td>
<td>31 AUG-4 SEP</td>
<td>20-24 JUL</td>
<td>SINGAPORE</td>
<td>$5470</td>
<td></td>
</tr>
<tr>
<td>OVERSEAS & SUBSEA</td>
<td>31 AUG-4 SEP</td>
<td>20-24 JUL</td>
<td>HOUSTON, US</td>
<td>$4310</td>
<td></td>
</tr>
</tbody>
</table>

Additional Information

- **2020 Schedule and Tuition (USD)**
 - **ABERDEEN, UK** 17-21 AUG $5235+VAT
 - **LONDON, UK** 18-22 MAY $5235+VAT
 - **PERTH, AUSTRALIA** 7-11 DEC $5445+GST

Any course is available in-house at your location. Contact us today.
Production Operations 1 – PO1

FOUNDATION
10-DAY

PO1 represents the core foundation course of PetroSkills’ production engineering curriculum and is the basis for future oilfield operations studies. Course participants will become familiar with both proven historical production practices as well as current technological advances to maximize oil and gas production and overall resource recovery. The course structure and pace apply a logical approach to learn safe, lean cost, integrated analytical skills to successfully define and manage oil and gas operations. Applied skills guide the participant with a framework to make careful, prudent, technical oil and gas business decisions. Currently emerging practices in the exploitation of unconventional resources including shale gas and oil, and heavy oil and bitumen complement broad, specific coverage of conventional resource extraction.

DESIGNED FOR
Petroleum engineers, production operations staff, reservoir engineers, facilities staff, drilling and completion engineers, geologists, field supervisors and managers, field technicians, service company engineers and managers, and especially engineers starting a work assignment in production engineering or operations or other engineers seeking a well-rounded foundation in production engineering.

YOU WILL LEARN HOW TO
- Recognize geological models to identify conventional and unconventional (shale oil and gas and heavy oil) hydrocarbon accumulations
- Understand key principles and parameters of well inflow and outflow
- Build accurate nodal analysis models for tubing size selection and problem well review
- Design and select well completion tubing, packer, and other downhole equipment tools
- Plan advanced well completion types such as multilateral, extended length, and intelligent wells
- Design both conventional and unconventional multi stage fractured horizontal wells
- Apply successful primary casing cementing and remedial repair techniques
- Select equipment and apply practices for perforating operations
- Plan well intervention jobs using wireline, snubbing, and coiled tubing methods
- Manage corrosion, erosion, soluble and insoluble scales, and produced water handling challenges
- Apply well completion and workover fluid specifications for solids control and filtration
- Employ the five main types of artificial lift systems
- Identify formation damage and apply remedial procedures
- Design and execute successful carbonate and sandstone reservoir acidizing programs
- Understand the causes of sand production and how to select sand control options
- Understand the proper use of oilfield surfactants and related production chemistry
- Identify and successfully manage organic paraffin and asphaltene deposits
- Choose cas Management of production logging tools and interpret logging results
- Understand modern conventional frac stimulation practices
- Understand multistage, horizontal well shale gas and shale oil massive frac job design and operations
- Review heavy oil development and extraction including mining operations and current modern thermal processes

COURSE CONTENT
Importance of the geological model • Reservoir engineering fundamentals in production operations • Understanding inflow and outflow and applied system analysis • Well testing methods applicable to production operations • Well completion design and related equipment • Primary and remedial cementing operations • Perforating design and applications • Completion and workover well fluids • Well intervention: wireline, hydraulic workover units, and coiled tubing • Production logging • Artificial lift completions: rod pump, gas lift, ESP, PCP, plunger lift, and others • Problem well analysis • Formation damage • Acidizing • Corrosion control • Scale deposition, removal, and prevention • Sulfurates • Paraffin and asphaltene • Sand control • Hydraulic fracturing • Unconventional resources: shale gas and oil, heavy oil and bitumen

PTO is also available as a self-paced, virtual course which is an enhanced version of the face-to-face public session.

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALGARY, CAN</td>
<td>25 MAY-6 JUNE</td>
<td>$7995+GST</td>
</tr>
<tr>
<td>DENVER, US</td>
<td>15-26 JUNE</td>
<td>$7995</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>23 MAR-10 APR</td>
<td>$7995</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>9-20 NOV</td>
<td>$9395</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>12-23 OCT</td>
<td>$9395+VAT</td>
</tr>
<tr>
<td>+1.918.828.2500</td>
<td>petroskills.com</td>
<td></td>
</tr>
<tr>
<td>+1.800.821.5933</td>
<td>(toll free North America)</td>
<td></td>
</tr>
</tbody>
</table>

Surface Operations – PO3

BASIC
5-DAY

This course presents a basic overview of all typical oilfield treating and processing equipment. Participants should learn not only the purpose of each piece of equipment but how each works. Emphasis is on gaining a basic understanding of the purpose and internal workings of all types of surface facilities and treating equipment. A major goal of this course is to improve communication among all disciplines, the field, and the office. Better communication should enhance operational efficiencies, lower costs and improve production economics. Example step-by-step exercises are worked together with the instructor to drive home the important points. Daily sessions include formal presentation interspersed with a good number of questions, discussion and problem solving.

DESIGNED FOR
All field, service, support, and supervisory personnel having interaction with Facilities Engineers and desiring to gain an awareness level understanding of the field processing of production fluids. This course is excellent for cross-training and delivers an understanding of all the fundamental field treating facilities.

YOU WILL LEARN
- A practical understanding of all the fundamental field treating facilities: what they are, why they are needed, how they work
- The properties and behavior of crude oil and natural gas that govern production operations
- Field processes for treating and conditioning full wellstream production for sales or final disposition
- The basics of oilfield corrosion prevention, detection, and treatment
- Internal workings of separators, pumps, compressors, valves, dehydrators, acid gas treatment towers, and other treating equipment
- A wide range of produced fluid measurement and metering devices
- A description of treating equipment whether located on the surface, offshore platform, or sea floor

COURSE CONTENT
Properties of fluids at surface • Flowlines, piping, gathering systems; solids and liquid limits • Oil- water-gas-solids - contaminants • Separation and treatment • 2-3 phase separators, free water knockout, centrifugal, filter • Storage tanks, pipe barrels, pressure/ vacuum relief, flame arresters • Stabilizers • Foams, emulsions, paraffins, asphaltenes, hydrates, salts • Dehydrators • Water treaters: SP packs, plate interceptors, gas flotation, coalescers, hydrocyclones, membranes • Acid gas treatment: coatings, closed system, chemicals, solvents, conversion; stress cracking • Valves: all types; regulators • Pumps/ Compressors: centrifugal, positive displacement, rotary, reciprocating, ejectors • Metering: orifice, head, turbine, and others • Corrosion/Scales: inhibition and treatment

PTO is also available as a self-paced, virtual course which is an enhanced version of the face-to-face public session.

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBAI, UAE</td>
<td>13-17 DEC</td>
<td>$5450+VAT</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>2-6 NOV</td>
<td>$4310</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>13-17 JULY</td>
<td>$5035+VAT</td>
</tr>
<tr>
<td>MELBOURNE, AUS</td>
<td>14-18 SEP</td>
<td>$4255</td>
</tr>
<tr>
<td>SAN ANTONIO, US</td>
<td>1-5 JUNE</td>
<td>$4255</td>
</tr>
</tbody>
</table>

Production Technology for Other Disciplines – PTO

FOUNDATION
5-DAY

PTO is an asset team course, as it introduces a broad array of important daily Production Technology practices. Terminologies, expressions, axioms, and basic calculations regularly utilized by production techns are covered. Emphasis is upon proven technology required to effectively develop and operate an asset in a multidiscipline development environment. Practical application of technology is emphasized. Nodal analysis examples to assess well performance are set up. Well completion equipment and tools are viewed and discussed. Exercises include basic artificial lift designs, acidizing programs, gravel pack designs, and fracturing programs. Shale gas and oil development challenges are thoroughly explained. Horizontal and multilateral technology is presented.

DESIGNED FOR
Exploration and production technical professionals, asset team members, team leaders, line managers, IT department staff who work with data and support production applications, data technicans, executive management, and all support staff who require a more extensive knowledge of production technology and engineering.

YOU WILL LEARN HOW TO
- Apply and integrate production technology principles for oilfield project development
- Choose basic well completion equipment configurations
- Perform system analyses (Nodal Analysis) to optimize well tubing design and selection
- Perform basic artificial lift designs
- Apply the latest shale gas and oil extraction technologies
- Understand the chemistry and execution of sandstone and carbonate acid jobs
- Design sand control gravel pack completions
- Evaluate well candidate selection to conduct a hydraulic fracturing campaign
- Apply new production technology advances for smart well completions
- Maximize asset team interaction and understand the dynamics between production technology and other disciplines

COURSE CONTENT
Rise and tasks of production technology • Compilation design • Inflow and outflow performance • and more...

PTO is also available as a self-paced, virtual course which is an enhanced version of the face-to-face public session.

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON, US</td>
<td>6 APR-3 JULY</td>
<td>$4325</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>31 AUG-27 NOV</td>
<td>$4325+VAT</td>
</tr>
<tr>
<td>+1.918.828.2500</td>
<td>petroskills.com</td>
<td></td>
</tr>
<tr>
<td>+1.800.821.5933</td>
<td>(toll free North America)</td>
<td></td>
</tr>
</tbody>
</table>

Any course is available in-house at your location. Contact us today.
IN-HOUSE TRAINING
WHEN YOU NEED IT,
WHERE YOU NEED IT.

DO YOU HAVE TEAM TRAINING NEEDS?
WE CAN HELP!

In-house courses deliver private, on-site training to your group, whenever, wherever, and however you need it.

Save time, money, and travel hassles by bringing our course to your site, or any location that suits you.

If you do not have enough participants for an in-house session, we may be able to schedule an On-Demand Public session in your location.

For more information, or to reserve training for your team, go to petroskills.com/inhouse
Oil and Gas Processing Facilities for Operations and Maintenance – OT1

BASIC 5-DAY

The public course content is governed by the common production / processing facilities in the regions where the course is being held. There are gas / LNG content focus, gas / expander plant, oil / gas focused courses. All locations include an overview of gas processing, industry terminology, process drawings, units of measurement, hydrocarbons physical properties, phase behavior fundamentals, plus the localized topics below. Course content is customizable to client needs at no additional cost.

Marcellus / Bakken Gas Processing Modules
- Water / hydrocarbon behavior
- Basic principles of fluid flow
- Amine gas sweetening
- Mole sieve dehydration
- Mechanical Refrigeration
- GSP (T/E) Process Operations
- NGL stabilization and fractionation
- Process troubleshooting

Permian / Eagle Ford / North Sea Oil and Gas Production and Processing Modules
- Basic principles of fluid flow
- Gas lift systems
- Production separators
- Crude oil dehydration
- Crude oil desalting
- Crude oil, condensate, and NGL stabilization
- Crude oil storage and vapor recovery systems
- Crude oil pipeline systems
- Produced water treating
- Process troubleshooting

Australia Gas Processing Modules
- Water / hydrocarbon behavior
- Basic principles of fluid flow
- Amine gas sweetening (not in Brisbane)
- Mole sieve dehydration
- Mechanical refrigeration
- Cascade refrigeration
- Mixed refrigerants
- NGL stabilization and fractionation
- LNG facilities
- Process troubleshooting

Amine Sweetening and Gas Dehydration for Operations and Maintenance – OT41

FOUNDATION 4-DAY

This course will provide the basic knowledge required for understanding operating issues in natural gas amine sweetening and dehydration units. Course content is customizable to client needs at no additional cost.

YOU WILL LEARN
- Basic principles of gas processing
- The physical properties of hydrocarbons
- Practical application of the principles of hydrocarbon phase behavior
- To determine the water content of produced natural gas and the effects of acid gases
- The problems and dangers of hydrate formation
- Effective methods of hydrate inhibition
- Two types of dehydration processes: adsorption and absorption
- Principles and operational elements of TEG gas dehydration
- Principles and operational elements of mole sieve gas dehydration
- Principles and operational elements of amine sweetening

LNG Facilities for Operations and Maintenance – OT43

FOUNDATION 5-DAY

This five-day, LNG facilities course provides an overview of field operations, and an in-depth review of the in-plant equipment and processes. The course includes the two most common types of LNG liquefaction processes, the AP-C3MR™ and ConocoPhillips Optimized Cascade® Process. Classroom exercises/problems focus on the application of theory to operational trends, so operators can understand their processes and become more proficient at identifying issues and troubleshooting problems before production suffers. Course content is customizable to client needs at no additional cost.

DESIGNED FOR
- LNG facility operators who require a working knowledge of the various processes used in LNG facilities, including the common operational difficulties that may arise and operational tactics used to resolve them. Also suitable for maintenance technicians, supervisors, and managers, as well as other non-engineering personnel who would benefit from an understanding of gas processing techniques that can be applied in their daily work activities.

YOU WILL LEARN
- Overview of oil and gas processing, including typical field operations
- The required feed quality specifications for LNG facilities, including issues with common contaminants
- Separation equipment with a focus on critical separation equipment in LNG facilities
- Operational aspects of gas area removal systems (AGRU) for LNG facilities
- Gas dehydration processes for LNG (including pre-cooling and molecular sieve)
- Mercury removal processes for LNG, and location/operation in the facility
- Centrifugal compressor operations and issues
- Refrigeration system operational principles (propane, cascade and mixed refrigerant)
- LNG stabilization and fractionation processes (regional)
- LNG COP Cascade® Process Overview
- LNG AP-C3MR™ Process Overview
- LNG storage operations and considerations
- LNG ship loading and boil-off gas management issues and considerations
- Application of hydrocarbon physical properties and phase behavior to understand the process operational issues within the overall facility
- Gas turbine operations and issues
- Hydrocarbon physical properties and phase behavior as the natural gas flows through the plant

Crude Oil Pipeline Operations – OT50

FOUNDATION 5-DAY

This course utilizes case studies and industry best practices for operating and maintaining onshore crude oil and liquid pipelines that maximize life cycle reliability, employee, public, and environmental safety; and operational cost effectiveness. It focuses on open discussions and troubleshooting techniques that may be applied to crude, HVL (High Volatility Liquids) and refined product pipelines and their associated infrastructure. The course aims to improve the operation profitability and communication with management and engineering staff. Course content is customizable to client needs at no additional cost.

DESIGNED FOR
- Pipeline operators personnel who require a working knowledge of onshore pipeline and terminal systems, including the common operational difficulties that may arise and operational tactics used to resolve them. Also suitable for maintenance personnel, meteorologists, lead supervisors, and managers, and engineering staff that need a working knowledge of field pipeline operations.

YOU WILL LEARN HOW TO
- Apply regulatory codes, standards, and industry guidelines (PHMSA 195, ASME B31.4, API-1173 and others) that control and guide the operation and maintenance of pipeline facilities
- Explain fluid properties and behavior of crude oils, wax behavior, temperature relationships and use of DRA in crude oil pipelines
- Explain pipeline hydraulics, pipeline pressure gradients and predict capacity on the system
- Identify pipeline MOP, surge and causes of overpressure and mitigation measures
- Explain pipeline facilities; pump stations, filtration, metering and LACT units, sampling and testing, pigging equipment, tank terminals and truck/rail loading facilities
- Explain liquid pipeline operations; commissioning and purging/kill, startup, stopping, pigging and pig receiver operations, measurement and sampling activities
- Identify principle causes of loss of containment and mitigation measures: corrosion, environmental cracking, overpressure, 3rd party damage and error
- Review regulatory compliance requirements for CFR 49, Part 195, to be better prepared in the case of compliance audits
- Explore emergency response measures to spills and loss of containment

NGL Extraction, Stabilization and Fractionation for Operations and Maintenance – OT42

FOUNDATION 4-DAY

This course is designed to deliver the basic knowledge required for understanding operating issues in NGL (Natural Gas Liquids) extraction and stabilization/fractionation. Course content is customizable to client needs at no additional cost.

YOU WILL LEARN
- About the various unit operations required in gas processing and how they impact one another
- Conditions that favor hydrate formation, and methods to mitigate hydrates (hydrate inhibition)
- Principles and operations of gas compressors
- Principles, operations, and troubleshooting mechanical refrigeration systems (propane and refrigerated systems)
- Molecular sieve dehydration operations and issues
- Operating principles, typical performance, and issues in NGL extraction processes
- Refrigeration/UT valve/turbosexpanders
- NGL stabilization and fractionation principles, operations, controls, and common operating problems

Crude Oil Pipeline Transportations
- Industry codes and regulations, scope and applicability
- Crude oils, waxes and DRA, fluid properties and behavior
- Hydraulic analysis of pipelines and gradients
- Pipeline pumps – components, operation, seal systems and seal leak detection
- Pipeline surge and overpressure protection systems
- Pipeline facilities – filtration, pressure controls, pigging equipment
- Terminal facilities – tanks, loading facilities, metering, sampling and proving
- Pigging goals, processes and activities
- Pipeline repairs and maintenance
- Corrosion overview and prevention
- Leak detection methods
- CFR 49, Part 195 review of documentation requirements and terminology

Any course is available in-house at your location. Contact us today.
Turnaround, Shutdown and Outage Management – TSOM

INTERMEDIATE 3-DAY

Scheduled turnarounds are difficult to manage. Managing a surprise shutdown or outage is like firefighting. Firefighters succeed because they know what strategies work and are highly trained to handle complex, risky situations. Uncertainty and complexity abound when a plant is down. Extra work can appear when equipment is opened and inspected. Integrating project work increases the challenge. Experienced instructors show you how to control scope uncertainty, tackle the complexity of integrating project work, and get the facility restarted. Upon completion you will know how to deploy scarce resources (time, people and materials) to complete work on time and within budget, utilize best practices in TSO planning, execution and closeout, and manage engineering, maintenance, operations and project interfaces. A blend of instruction, guided discussion, and hands-on exercises using real-world examples makes the sessions thought provoking. The exercises will include both single and group activities. Course content is customizable to client needs at no additional cost.

YOU WILL LEARN HOW TO

• Establish targets to ensure support from all facility stakeholders
• Develop a robust resource plan and get the resources you need
• Integrate scopes for both maintenance and projects
• Establish turnaround scope selection criteria early
• Select a computerized work system
• Address key outage constraints and operations interfaces
• Develop a robust contracting plan
• Prepare an execution plan
• Measure and control shutdown progress

COURSE CONTENT

Six-phases of turnaround, outage and shutdown management • Issues and challenges • Quality control • Health, safety and environmental planning • Computerized systems benefits and choices • Integrating the plan • Managing stakeholders and resources • Procurement and contracting • Tracking progress and controlling change

Applied Maintenance Management – OM21

BASIC 5-DAY

No matter the price of oil, safe, efficient operations require well-managed, integrated asset management. Effective, well organized maintenance management is the key. In this course, participants will receive a sound, integrated, basic knowledge of the maintenance function and how to progress towards world-class performance. Individual action plans will carry course learning into the work environment. A pre and post seminar self-assessment will be given to indicate delegates’ competency improvements. The assessment is taken from the PetroSkills industry standard competency map for Maintenance Management. Course content is customizable to client needs at no additional cost.

DESIGNED FOR

Maintenance supervisors, team leaders, or managers needing to improve their maintenance programs. This course is a broad survey of essential aspects of maintaining a safe, efficient, and reliable facility asset.

YOU WILL LEARN

• World class maintenance standards and how to apply them
• Key performance indicators for your organization
• Essential elements of work planning and scheduling
• Optimization of preventive and predictive maintenance
• To focus your resources on critical equipment
• How to work with contractors more effectively
• Development of organizational competence

COURSE CONTENT

World class standards • Maintenance strategies • Planning and scheduling • Optimizing preventative and predictive maintenance • Identifying critical equipment • Developing organizational competence • Presenting your action plan

Maintenance Planning and Work Control – OM41

FOUNDATION 5-DAY

No matter what the price of oil is, safe facilities operations require effective maintenance work control. ISO 55000 (PAS 55) is the asset management standard everyone is moving towards. This course is designed to build competency in Work Control as a primary skill set required to achieve these new standards. It will focus on the six phases of work management: work identification, planning, prioritization, scheduling, execution, and history capture. These essential skills are the key components of integrity management, safety, efficient resource utilization, and reliable operation. A pre and post self-assessment will be used to measure competency improvement. In order to improve facility asset management, each participant will develop an action plan to help their organizations in the long-term effort to become more efficient and safe. Course content is customizable to client needs at no additional cost.

DESIGNED FOR

Maintenance managers, superintendents, supervisors, team leaders, and planners engaged in work management, planning, and scheduling.

YOU WILL LEARN

• To develop world class planning and work control
• To employ business process analysis techniques in work control
• How to use a gap analysis on your work management system
• Step-by-step work control from identification through using work history
• Optimization of preventive and condition-monitoring activities
• Techniques: critical equipment analysis, critical spares control, and emergency response work

COURSE CONTENT

Work identification • Planning prioritization • Scheduling execution • History records • Optimizing preventive maintenance • Predictive maintenance planning • Critical equipment focus • Emergency response

Process Plant Reliability and Maintenance Strategies – REL5

INTERMEDIATE 5-DAY

This course is designed to teach reliability engineering skills as they apply to improving process system reliability and developing maintenance strategies. You will use modern software and analysis methods to perform statistical analysis of failures and model system performance, plus develop maintenance and reengineering strategies to improve overall performance.

DESIGNED FOR

Maintenance, engineering, and operations personnel involved in improving reliability, availability, condition monitoring, and maintainability of process equipment and systems. Participants should have foundation skills in statistical analysis and reliability techniques for equipment.

YOU WILL LEARN

• Improving reliability in new facilities/systems
• Reliability design for maintainability
• Developing initial maintenance strategies
• Virtual equipment walk-down; critically using simulation and modeling; developing baseline condition monitoring programs; developing lubrication programs; and developing process-specific maintenance strategies with reliability-centered maintenance (RCM)
• Improving reliability in existing facilities/systems
• Analyzing process reliability plots to determine the amount of opportunity
• Continuous improvement through failure reporting, analysis, and corrective action systems (FRACAS)
• Developing policies and procedures; developing failure reporting codes; statistical analysis of failures using Weibull; and developing root cause analysis (RCA) programs (triggers for RCA and analyzing recommendations)
• Developing maintenance strategies with condition monitoring
• Identifying applicable condition monitoring methods; using criticality to determine level of condition monitoring application; and reporting asset health
• Developing maintenance strategies with RCM
• Developing policies and procedures; identifying systems for analysis; analyzing recommendations with simulation and modeling; and implementing recommendations
• Monitoring results
• Understanding the true purpose of key performance indicators (KPIs)
• Developing appropriate reliability and maintainability KPIs

COURSE CONTENT

Criticality analysis • Availability-simulation and modeling • Statistical analysis of failures using Weibull • Maintenance strategy development; condition monitoring; reliability-centered maintenance; and essential care • Process reliability analysis • Root cause analysis • Failure reporting, analysis, and corrective action systems • Key performance indicators • Reliability definitions

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Course</th>
<th>2020 Schedule and Tuition (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-11 DEC $4145</td>
<td></td>
</tr>
</tbody>
</table>

Any course is available in-house at your location. Contact us today.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
How can you minimize health, safety, security and environment risks—anytime, anywhere?

ePilot™ e-learning

ONLINE HSSE LIBRARY

Many employers are struggling with limitations on their training resources. Yet the need to stay up-to-date with safety and regulatory mandates is critical. A single gap in knowledge can seriously jeopardize every safety and quality improvement effort and a company’s good standing with regulatory compliance agencies.

PetroSkills ePilot™ HSSE Library can help you:

- **Identify knowledge gaps** quickly and generate pathways to proficiency
- **Achieve compliance goals** with compliance-focused management and reporting
- **Reduce time-to-proficiency**, enable refresher training, and improve on-boarding
- **Reduce expenses** of classroom scheduling, travel, and instructor fees

Competent Person Fall Protection – FPST

BASIC 5-Day

This comprehensive training program is for anyone who develops or impacts fall protection policy, as well as those involved with design practices, facility or production modifications and equipment procurement. The goal of training is to provide participants with the knowledge to solve fall protection issues before they arise. Attendees will acquire the tools required to become certified OSHA competent persons and the skills to develop and implement a comprehensive, cost effective and attainable fall hazard control system. The course provides interactive instruction, multimedia resources, and knowledge check that have been developed to train attendees to the competent person level.

DESIGNED FOR

This course is intended for safety directors, safety professionals, fall protection program administrators, managers, facility engineers, production supervisors, and maintenance supervisors.

YOU WILL LEARN

- To recognize myths and facts surrounding fall protection
- To describe how fall protection fits into the core elements of your safety program
- To determine the key resources for identifying fall hazards
- To rank abatement options using objective criteria
- Regulatory requirements for access, surfaces, and edge protection
- About lift equipment including requirements for vacuuming or entering an aerial lift
- The regulations and standards for scaffolding
- How to minimize the dangers of falling objects
- About the initial ANSI fall protection standards and the new ones within the Z359 family
- The difference between certified and non-certified anchorages
- How to recognize how ANSI applies to various equipment components
- How to inspect fall hazard equipment
- About typical roof fall hazards
- About fall clearances including sample fall clearance calculations
- To identify the elements of a horizontal lifeline system and recognize the pitfalls
- The importance of preplanning a fall protection rescue as a part of a pre-task plan
- To develop a rescue procedure for a specific personal fall arrest system

COURSE CONTENT

Fall protection program overview • Fall hazard risk assessment • Fall hazard abatement • Engineering controls • Lift equipment • Scaffolding • OSHA requirements and ANSI standards • Equipment inspection • Roof fall protection • Fall clearances • Anchorages • Horizontal lifelines • Rescue

Applied Environmental Management Systems – AEM

FOUNDATION 5-Day

Since the Rio de Janeiro Earth Summit (UNCED) held in 1992, environmental issues have been drawn to the forefront of organizations’ operations and possibly their reputations. A review of the world’s press often reveals spillages, toxic releases, fires, and other pollution events. There are efficiency opportunities from better use of energy, water and from reducing waste in a systematic way. Participants will receive a template Environmental Management System (EMS) manual for their own use as part of the study materials. This class provides a complete review of the international standard for environmental management, ISO 14001:2015, as well as other environmental management techniques.

Over five days, the class works through the PDCA improvement cycle provided by ISO 14001, teaching the tools and techniques of excellent practice. The course includes a week-long practical implementation case study set in the fictional highly-realistic setting of oil products distribution company Melvis Group where the new learning is validated through application. Please see www.melvisgroup.com for more information.

DESIGNED FOR

Environmental professionals seeking a deeper knowledge of environmental management systems (EMS) and/or external certification to ISO 14001, H&S managers wanting to broaden their knowledge in a related discipline, project managers, other staff with delegated environmental responsibilities such as those related to energy, waste, or water.

YOU WILL LEARN HOW TO

- Successfully design and use the principle elements of an environmental management system in a typical petrochemical organization
- Identify and integrate key tools associated with environmental management including environmental impact assessment, setting and progressing environmental objectives, emergency preparedness, and incident investigation
- Reflect on, shape, and initiate improvements in the environmental culture of an organization
- Communicate a powerful improvement message to a team of senior leaders

COURSE CONTENT

Context of the organization • Leadership and commitment • Environmental policy • Roles, responsibilities, and authorities • Actions to address risks and opportunities (aspects, compliance, objectives) • Resources, competence, awareness, communication, documentation • Operational planning and control • Emergency preparedness and response • Monitoring, measurement, analysis, and evaluation • Internal audit • Management review • Improvement

2020 Schedule and Tuition (USD)

- **BASIC 5-Day**
 - HOUSTON, US 13-17 JULY $4410
 - LONDON, UK 15-19 JUNE $5135 + VAT

For more information, please visit www.petroskills.com/elearning or email solutions@petroskills.com

See website for dates and locations.
Applied Occupational Health and Safety Management Systems – HSM

FOUNDATION 5-Day

Every 15 seconds, somewhere in the world, a worker is killed and over 150 others are injured. Our members’ and clients’ experience is that committed application of an Occupational Health and Safety Management System (OHSMS) can reduce such incidents, while providing a platform for sustained cultural change. We call this ‘predict and prevent’ instead of the unstructured approach of ‘react and remedy’. Participants will receive a template OAH&S-MS manual for their own use as part of the study materials. This class provides a complete review of the new international standard for occupational health and safety management, ISO 45001:2018, as well as an overview of other common OAH&S-MS (EHS65, ILO OH-S, 2001, IIPG HSE-MS) that can be aligned to organizations’ own systems. Over five days, the class works through a Plan, Do, Check, Act improvement cycle teaching the tools and techniques of excellent practice. The course includes a week-long practical implementation case study set in the fictional highly-realistic setting of oil products distribution company Melvile Group where the new learning is validated through application. Please see www.melvilegroup.com for more information.

DESIGNED FOR

Health and Safety (H&S) professionals who want to take advantage of the new improvement opportunities presented by ISO 45001 (or seek external certification), project managers, contract managers, members of H&S committees, and owners, directors and managers of smaller organizations with limited access to specialist H&S advice.

YOU WILL LEARN HOW TO

- Successfully design and use the principle elements of an OHSMS in a typical petrochemical organization
- Identify and integrate key tools associated with OHS management, including HazID, risk assessment, JSA, PTW, LOTO, active and reactive monitoring
- Reflect on, shape and initiate improvements in the safety culture of an organization
- Communicate a powerful improvement message to a team of senior leaders

COURSE CONTENT

- Context of the organization
- Leadership and commitment
- OHS policy, Roles, responsibilities, and authorities
- Actions to address risks and opportunities
- Objectives and plans to achieve them
- Support (competence, awareness, communication, documentation)
- Operational control
- Emergency preparedness
- Performance evaluation (monitoring, internal audit, management review)
- Improvement

Spill Control and Remediation Engineering – SCRE

FOUNDATION 3-Day NEW

The first part of this course reviews the basics of spill control response principles, organization, procedures, and equipment used. Attendees will be introduced to evaluation of spills, organization of response and communications, surveillance and tracking, data records and information. The second part of this course will review the basics of remediation engineering applicable to property contaminated by crude and hydrocarbons. It will review the various technologies to treat spill-contaminated waters and soils. The course will finish with a review of solids handling for permanent disposal.

DESIGNED FOR

Operators and field managers, pipeline operators, loading and unloading personnel, and those involved with crude and hydrocarbon transportation. It will also benefit personnel involved in treatment of contaminated property or hard-to-dispose contaminated wastes. This course will be useful to managers in completion and optimization of operations. The course is an important reference parameter for safety situations where there might be involvement of governmental or civil protection.

YOU WILL LEARN

On Spill Control:
- To understand and analyze spill causes and most common situations
- To consider factors to be considered when faced with a spill situation
- To prioritize the three-tiered response consideration, personnel requirements
- To identify equipment to control spills, basic principles and design, applicability of technologies
- To identify risk and protective equipment
- To identify environmental effects and information to all at stake (Government, Municipal-Regional or other authority, Health and Safety)
- To promptly investigate root causes, decontamination of equipment and waste management

On Remediation Engineering:
- To identify and detect contaminated land, migration and fate
- To assess hydrocarbon’s biodegradability, use gas chromatography and UV light properties
- To identify technology of air and in-situ soil vapor extraction remediation
- To assess soil washing, bioremediation and phytoremediation advantages
- To identify bioremediation of metal contaminated soils
- To identify composting and vermiculture
- To identify electro kinetics, stabilization and solidification for final disposal

COURSE CONTENT

- Spill causes, detection, response and communication derived from the incident
- Equipment used to control spills, HSE
- Spill remediation
- Equipment used to control spills, HSE
- Remediation technologies
- Bioremediation, phytoremediation, composting, and permanent solidification and disposal

Management Systems Lead Auditor – AUD

INTERMEDIATE 5-Day

Our Lead Auditor course provides a rigorous approach to conducting a risk-based internal audit of any structured means of control aligned to the international standard guidance ISO 19011. We use ISO 14001 (environment) and ISO 45001 (health and safety) as reference frameworks, but our approach could be applied to ISO 19011 (quality) or your own organization’s management systems. A copy of the best-selling book, Health and Safety, Environment, Quality Audits – A Risk-Based Approach is included for each participant. For the duration of the class, participants are assigned to a 5-6-person audit team, led by an experienced Lead Auditor. The course participants will be introduced to the essential principles of corporate governance and risk management. It also adds value for senior management from the auditing process through provision of a high-level, future-focused opinion. The course includes a week-long practical implementation case study set in the fictional highly-realistic setting of oil products distribution company Melvile Group where the new learning is validated through application. Please see www.melvilegroup.com for more information.

This course is approved by the International Institute of Risk and Safety Management (IIRSM) in conjunction with SMC – see www.iirsm.org.

DESIGNED FOR

New or aspiring management system auditors, experienced auditors aspiring to progress to Lead Auditor status, department managers wanting to understand the audit process or prior to secondment to an internal audit team.

YOU WILL LEARN HOW TO

- Lead/appraise in an audit or review with line in the standards of the auditing profession, including ISO 19011:2018
- Initiate an internal audit plan
- Prepare a risk-based audit plan to steer the conduct of any audit
- Conduct audit fieldwork including the necessary reviews and tests to substantiate findings
- Report the audit results and present to senior management

COURSE CONTENT

- Risk management and business control
- Principles of auditing (ISO 19011) initiating and conducting a management systems audit
- Review and test
- Effective interview skills
- Legal and ethical aspects of auditing
- Developing audit findings and writing recommendations
- Reporting audit results and following up

Accredited H&S Professional: GradIOSH, CMIOHS and ASP by Applied Learning (Level 6 NVQ Diploma in Occupational Health and Safety Practice) – HSP

SPECIALIZED NEW

Achieved Chartered Membership (CMOHS) of the Institution of Occupational Safety and Health (IOSH) by flexible, distance learning. CMOHS is the world’s largest health and safety professional body, and its membership credentials are recognized globally. This is a mentored program typically lasting 12 months (532 hours). Each participant has a personal mentor and adviser who works with them on a flexible, one-to-one basis. Our support is tailored to meet your needs. You can start at any time, and you can work at a pace that suits you and your job. This qualification is accepted by IOSH for Graduate Membership (GradIOSH), CMOHS is awarded after successful application and completion of an open book examination and professional interview. The Board of Certified Safety Professionals (BCSP) has a credential agreement with IOSH to accept GradIOSH for its Associate Safety Professional (ASP) designation. ASP is now a full certification and internationally accredited by the American National Standards Institute (ANSI). For more information, please go to petroskills.com/asp.

DESIGNED FOR

Experienced health and safety managers, officers, and advisers seeking professional recognition of their prior skills. You must be an active practitioner with at least two years’ experience.

YOU WILL LEARN

- With support from a personal mentor, to build your portfolio of work-based evidence which meets ProQual requirements for the award
- To write reflective reports explaining the evidence using templates which will be provided to you
- To identify and close any gaps in your H&S knowledge through assessment and internal verification of your portfolio
- To be accredited by the Board of Certified Safety Professionals.

COURSE CONTENT

The syllabus has been designed to cover the competencies of a Health and Safety Professional. There are 10 mandatory units in the qualification, which are completed by presenting and explaining work-based evidence:

1. Promote a positive health and safety culture
2. Develop and implement the health and safety policy
3. Develop and implement effective communication systems for health and safety information
4. Develop and maintain individual and organizational competence in health and safety matters
5. Identify, assess, and control health and safety risks
6. Develop and implement proactive monitoring systems for health and safety
7. Develop and implement emergency response systems and procedures
8. Develop and implement health and safety review systems
9. Maintain knowledge of improvements to influence health and safety practices.

Any course is available in-house at your location. Contact us today.

+1.918.828.2500 | petroskills.com | +1.800.821.5933 (toll free North America)
Available to You

Introduction to Petroleum Business – IPB

BASIC

3-DAY

Creation of shareholder value should be at the heart of every business decision. This course is designed for technical professionals in the petroleum industry who want to understand the nature of the petroleum business and how you will contribute to the financial success of your company. The course will introduce delegates to the structure of the petroleum business including supply and demand, how oil companies are organized and financed and what it takes to be financially successful. Success will be explored through an understanding of how we calculate long-term shareholder value both at the corporate and project level as well as the valuation of competitive advantage and incorporation of risk assessment in our models. Delegates will be introduced to the primary accounting financial statements and what they tell us about a company. Common accounting and economic terms and metrics will be reviewed. Participants should bring a PC with excel software to complete exercises.

DESIGNED FOR

Engineers, geologists, geophysicists, landmen, HR and other non-finance and accounting professionals who need an introduction to the business aspects of the petroleum industry including interplay of finance and economic evaluation in the creation of long-term shareholder value.

YOU WILL LEARN

• How the petroleum business is structured and capital is raised
• What is shareholder value and how it is created
• The critical importance of seeking competitive advantage
• Economic and accounting terminology
• How to make an economic valuation of an investment and assess its competitive advantage
• How value creation impacts share price
• How shareholder value is measured
• What is risk and how is it assessed in economic evaluations

COURSE CONTENT

The importance of creating value for shareholders • History and characteristics of the oil and gas business • Introduction to Economic Evaluation including Net Present Value, Internal Rate of Return, and risk • Introduction to the key accounting financial statements and terms • The need for competitive advantage and how it is measured • How to develop spreadsheets to conduct economic evaluations

Essential Leadership Skills for Technical Professionals – OM23

BASIC

5-Day

In the oil and gas industry, skilful and competent leadership is extremely important for safety, productivity, and asset management. The 21st century brings new emphasis on leaders, new communication technologies, increased focus on safety, information overload, workforce dynamics, asset integrity, and many other concerns which challenge even the most proficient leader/manager. How do we blend these new challenges with tried and true wisdom of success? There are skills to learn that will help you be more effective, with less stress. In this seminar/workshop you will explore your internal drivers and learn how to combine them with new skills for greater effectiveness. This seminar/workshop will include self-assessment, discussion, lecture, readings, role-playing, games, video examples, and creation of participant action plans. This course will help you unleash natural motivation in your team. Your stress level can be lowered by working more efficiently and effectively by tapping the emotional intelligence of your team and co-workers.

DESIGNED FOR

Anyone who has new responsibilities to lead a team. Supervisors, team leads, managers, and others interested in becoming a better leader and a contributing team member will greatly benefit from this one-week experience. Many may want to take this seminar/workshop more than once for continuous improvement.

YOU WILL LEARN HOW TO

• Become a more effective leader by overcoming the "tyranny of the urgent" with better time management
• Make better decisions by assessing when to make what kind of decisions
• Help others develop themselves by unleashing their career motivation
• Have more effective communications with technical and non-technical teams by developing the patience to let the team do its work
• Recognize and resolve conflicts before they get out of control by early detection of conflicts, when they’re simpler and have less impact
• Develop the ability to lead an empowered team of technical professionals by more effective delegation
• Reduce your own stress level by teaching yourself how to lower your stress with clearer thinking
• Learn assessment techniques for yours and other’s people skills by raising the competency levels of yourself and your team
• Walk your talk by getting buy-in for your ideas and vision
• Leading by example

COURSE CONTENT

The nature of teams • Leadership vs. management • Self-centering and tangential leadership • Listening • Motivation • Group dynamics • Conflict management • Team building • Critical thinking and taking action

Technical Resources Available to You

Keep current and ensure you always have the latest information by joining our email list.

You Will Receive:

• Complimentary learning and development resources
• Information on new courses and instructors
• Additional public course locations and dates
• Invitations for PetroSkills events and conferences

Simply go to petroskills.com/emailssignup

2020 Schedule and Tuition (USD)

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBLIN, US</td>
<td>24-28 Aug</td>
<td>$4305</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>21-25 June</td>
<td>$5450+VAT</td>
</tr>
<tr>
<td>DUBAI, UAE</td>
<td>10-14 Feb</td>
<td>$4310</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>13-17 July</td>
<td>$4310</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>19-23 Oct</td>
<td>$4310</td>
</tr>
<tr>
<td>DENVER, US</td>
<td>25-29 Jan</td>
<td>$4310</td>
</tr>
<tr>
<td>ORLANDO, US</td>
<td>30 Nov-4 Dec</td>
<td>$4310</td>
</tr>
<tr>
<td>SAN FRANCISCO, US</td>
<td>7-11 DEC</td>
<td>$4255</td>
</tr>
</tbody>
</table>

Any course is available in-house at your location. Contact us today.

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBLIN, US</td>
<td>24-28 Aug</td>
<td>$4305</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>21-25 June</td>
<td>$5450+VAT</td>
</tr>
<tr>
<td>DUBAI, UAE</td>
<td>10-14 Feb</td>
<td>$4310</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>13-17 July</td>
<td>$4310</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>19-23 Oct</td>
<td>$4310</td>
</tr>
<tr>
<td>DENVER, US</td>
<td>25-29 Jan</td>
<td>$4310</td>
</tr>
<tr>
<td>ORLANDO, US</td>
<td>30 Nov-4 Dec</td>
<td>$4310</td>
</tr>
<tr>
<td>SAN FRANCISCO, US</td>
<td>7-11 DEC</td>
<td>$4255</td>
</tr>
</tbody>
</table>

Any course is available in-house at your location. Contact us today.

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBLIN, US</td>
<td>24-28 Aug</td>
<td>$4305</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>21-25 June</td>
<td>$5450+VAT</td>
</tr>
<tr>
<td>DUBAI, UAE</td>
<td>10-14 Feb</td>
<td>$4310</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>13-17 July</td>
<td>$4310</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>19-23 Oct</td>
<td>$4310</td>
</tr>
<tr>
<td>DENVER, US</td>
<td>25-29 Jan</td>
<td>$4310</td>
</tr>
<tr>
<td>ORLANDO, US</td>
<td>30 Nov-4 Dec</td>
<td>$4310</td>
</tr>
<tr>
<td>SAN FRANCISCO, US</td>
<td>7-11 DEC</td>
<td>$4255</td>
</tr>
</tbody>
</table>

Any course is available in-house at your location. Contact us today.

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBLIN, US</td>
<td>24-28 Aug</td>
<td>$4305</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>21-25 June</td>
<td>$5450+VAT</td>
</tr>
<tr>
<td>DUBAI, UAE</td>
<td>10-14 Feb</td>
<td>$4310</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>13-17 July</td>
<td>$4310</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>19-23 Oct</td>
<td>$4310</td>
</tr>
<tr>
<td>DENVER, US</td>
<td>25-29 Jan</td>
<td>$4310</td>
</tr>
<tr>
<td>ORLANDO, US</td>
<td>30 Nov-4 Dec</td>
<td>$4310</td>
</tr>
<tr>
<td>SAN FRANCISCO, US</td>
<td>7-11 DEC</td>
<td>$4255</td>
</tr>
</tbody>
</table>

Any course is available in-house at your location. Contact us today.

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBLIN, US</td>
<td>24-28 Aug</td>
<td>$4305</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>21-25 June</td>
<td>$5450+VAT</td>
</tr>
<tr>
<td>DUBAI, UAE</td>
<td>10-14 Feb</td>
<td>$4310</td>
</tr>
<tr>
<td>HOUSTON, US</td>
<td>13-17 July</td>
<td>$4310</td>
</tr>
<tr>
<td>KUALA LUMPUR, MYS</td>
<td>19-23 Oct</td>
<td>$4310</td>
</tr>
<tr>
<td>DENVER, US</td>
<td>25-29 Jan</td>
<td>$4310</td>
</tr>
<tr>
<td>ORLANDO, US</td>
<td>30 Nov-4 Dec</td>
<td>$4310</td>
</tr>
<tr>
<td>SAN FRANCISCO, US</td>
<td>7-11 DEC</td>
<td>$4255</td>
</tr>
</tbody>
</table>

Any course is available in-house at your location. Contact us today.
Managing Non-Technical Risks – MNTR

BASIC 4-Day
Non-technical or societal risks have become the main source of business delays and budget overruns in the oil and gas industry. Non-technical risks typically are related to political, regulatory, health, safety, security, environmental, and social issues. Mitigation requires good external awareness and stakeholder engagement skills, but also the willingness of technical and commercial teams to work closely together with the non-technical disciplines to accommodate the non-technical perspectives in project designs and plans. This course looks at both the internal and the external challenges that a company may face related to stakeholder engagement. On the external side, we look at current trends in western and non-western societies, we study key stakeholder groups, in particular those seen as “difficult to deal with,” and then cover the practicalities of creating and maintaining effective relationships. However, a company will not be effective in its response to the external world if it is not well organized internally. Therefore, this course will also look at processes and tools to ensure internal alignment and cooperation with the aim to link external perspectives to business decision making. A key methodology is the quantification of non-technical risks because it helps prioritisation and focusing of resources and mitigating activities.

DESIGNED FOR
All oil and gas business professionals who are directly or indirectly involved in the management of non-technical risks. Specifically, managers with accountability for business delivery, that is, projects or operations; managers of technical and commercial teams that support projects or operations; and professionals in Health, Safety, Security & Social Responsibility; Government Relations; and Communications.

YOU WILL LEARN
• About important trends in the relationship between business and society
• To make the business case for active management of non-technical risks
• Essential concepts of stakeholder engagement, including dealing with activist stakeholders
• How to set up the internal structure and collaboration model to respond effectively to the external world
• How to apply the tools to identify, assess, quantify, and mitigate non-technical risks
• How to integrate non-technical risks into business decision-making processes

COURSE CONTENT
Trends in western and non-western societies affecting oil and gas companies • The business impact of non-technical risks: the case for action • An overview of modern stakeholder engagement models • Methods to deal with NGOs, activist investors, and communities • Insight in the power and limitations of multi-stakeholder initiatives • Internal organisational and cultural complexities and challenges and practical solutions • Leave with a blueprint for implementation in your own company • Essential international standards as required by international lenders and institutions • and more...

Cost Management – CM

FOUNDATION 5-DAY
Few problems threaten the petroleum businesses more than uncontrolled costs. Economic realities have made it necessary for most companies to operate with a “lean and mean” philosophy. As the price of our products fluctuates widely, the most vulnerable companies are those that are ineffective in understanding and managing their costs. The ability to properly manage costs is now paramount in a company’s success and even their ultimate survival. As the energy industry goes through its most monumental changes since the 1970s, the companies that can identify efficiencies and inefficiencies will be able to react to the challenges of the global market place, thus generating higher profits. This seminar is an introduction to Practical Cost Management techniques designed to help the participant better understand the underlying dynamics of cost using recent events and trends, using relevant exercises, timely case studies and role-playing techniques.

DESIGNED FOR
Operational managers, personnel, project managers, technology managers, budget managers, or anyone wanting to manage costs more effectively and efficiently. A familiarity with finance is helpful but not required.

YOU WILL LEARN HOW TO
• Understand the different cost classifications and cost drivers
• Determine and monitor the behavior of costs
• Build your own activity dictionary
• Design management control system that works
• Understand the principles of Activity Based Cost Management (ABC) and its development and implementation
• Analyze capital projects using the proper tools and techniques
• Manage and not mismanage costs
• Develop tools to use for managing costs
• Evaluate costs for effectiveness

COURSE CONTENT
Defining costs, classifications and terminology for a company • Resource cost, determining cost objects, cost drivers and their behaviors • Analyzing different types of cost management systems • Using Activities Based Management (ABM) to monitor costs and processes Building and using an activity dictionary • Using value added costs versus non-value added costs for improvement Distinguishing between cost effectiveness and cost efficiencies • Developing productivity measurements that work • Operating Cost Management using the budgets and processes Building and using an activity dictionary • Using value added costs versus non-value added costs for improvement Distinguishing between cost effectiveness and cost efficiencies • Developing productivity measurements that work • Support departments cost allocations Transfer pricing • Determining the break-even cost and volumes • Using variance analysis budget for monitoring performance • Optimizing the supply chain • Developing and analyzing capital investment projects Replace versus maintain • Life Cycle Costing • Using different scenarios to more effectively manage production costs Performance Measurement using capacity management techniques

Economics of Worldwide Petroleum Production – EWP

FOUNDATION 5-DAY
In the area of corporate and international petroleum production, do you know how to choose the best investments? Can you properly evaluate investment opportunities? Do you know what are some previous real events and which criteria to use for best results? Answers to these questions will greatly improve your ability to make profitable decision. Techniques for predicting profit, production, operating costs, and cash flow enable the analyst to evaluate decision alternatives for optimum results. Understanding cost of capital, financial structure, risk and uncertainty, present value rate of return, and other economic yardsticks enhances the quality and the value of economic analysis. Discussion of real-life examples with participants from many different countries enhances the value of the course.

DESIGNED FOR
Managers, supervisors, and operating personnel concerned with costs, profitability, budgets, the company bottom line and other aspects of economic analysis of petroleum production on a project, corporate, and worldwide basis, who have had some previous experience in this area. Due to similarity in content, PetroSkills recommends that participants take this course if they have some previous experience in this field as the course content is more advanced than Expanded Basic Petroleum Economics. Take one or the other, but not both courses.

YOU WILL LEARN HOW TO
• Use cash flow techniques in economic evaluations
• Evaluate and choose investment opportunities
• Use models to weight risk and uncertainty
• Evaluate decision alternatives using predictive techniques
• Evaluate how projects effect the corporation

COURSE CONTENT
Economics of natural gas, market crudes, OPEC, spot and futures markets, transportation • Production rate: mathematical models • Cash flow: revenue, capital and operating costs, spreadsheet exercises • Economic evaluation: present value techniques, risk sensitivity and risk analysis, decision trees, royalty, sources of capital, incremental economics, sink costs, inflation • Budgeting: examples and exercises, long-range planning • Cash versus write-off decision: depreciation, depletion, amortization • How to read an annual report: statements, financial ratios, what is and is not included, reading between the lines • Worldwide business operations: concessions, licences, production sharing contracts, joint ventures, cost of capital, sources of funding, debt and equity • Performance appraisal: buy/sell assessments • Computer economics software • Tips on format and inclusion of economic factors in computer spreadsheet analysis • Ethics in economic analyses

Petroleum Finance and Accounting Principles – PFA

FOUNDATION 5-DAY
Making the most efficient use of your resources is critical to the success of any company. Finance and accounting comprise the universal business language and help you manage those resources effectively. Planning and decision making that occur in an informal financial context permit better application of resources and promote competitive advantage. The aim of this course is to improve delegates’ job performance by enhancing their understanding of current international practices in finance and accounting within the E&P industry. The latest issues are discussed.

DESIGNED FOR
Personnel new to the oil and gas accounting industry - accounting, finance, or economists, others desiring to understand or refresh their knowledge of basic petroleum accounting concepts, financial personnel needing to understand unique issues as they relate to the petroleum industry, and technical or asset team members looking for the basic concepts of accounting and finance to encourage them to bring their company’s financial reports. This course may qualify for up to 34 hours of CPE for US CPAs.

YOU WILL LEARN HOW TO
• Understand financial reporting requirements for oil and gas companies under IFRS and U.S. GAAP
• Apply basic concepts and terminology for accounting and finance in oil and gas
• Create accounting statements, including a cash flow statement from data accumulation to audited financial statements
• Distinguish between the different financial statements and their roles
• Distinguish between financial, managerial, and contract (joint operations) accounting
• Recognize the different oil and gas accounting methods
• Determine the difference between profits and cash flow
• Apply capitalization rules and depreciation rules
• Recognize accounting treatments of joint ventures such as Production Sharing Agreements
• Evaluate capitalized assets using a ceiling-test
• Read and understand those confusing footnotes
• Prepare, read, and use the disclosures for oil and gas companies
• Recognize how accounting decisions can affect earnings, cash flows, and operational decisions
• Calculate, understand, and analyze financial reports and basic oil and gas ratios

COURSE CONTENT
Getting started: financial terms and definitions, the language of business, accounting rules, standards, and policies • Constructing the basic financial statements • Classifying revenues, assets, liabilities, and equity • Comparing different accounting elements • Accounting for joint operations • Accounting and reporting

2020 Schedule and Tuition (USD)

2020 Schedule and Tuition (USD)

PETROLEUM BUSINESS

2020 Schedule and Tuition (USD)

PETROLEUM BUSINESS

2020 Schedule and Tuition (USD)
Petroleum Risk and Decision Analysis – PRD

FOUNDATION 5-DAY

Good technical and business decisions are based on competent analysis of project costs, benefits and risks. Participants learn the decision analysis process and foundation concepts so they can actively participate in multi-discipline evaluation teams. The focus is on designing and solving decision models. About half the problems relate to exploration. The methods apply to R&D, risk management, and all capital investment decisions. Probability distributions and subjective judgments of project risks and uncertainties are carried through the calculations. Decision tree and influence diagrams provide clear communications and the basis for valuing each alternative. The complementary Monte Carlo simulation technique is experienced in detail in a hand-calculation exercise. Project modeling fundamentals and basic probability concepts provide the foundation for the calculations. The mathematics is straightforward and mostly involves only common algebra. This is a fast-paced course and recommended for those with strong English listening skills. This course is intended as the prerequisite for the Advanced Decision Analysis with Portfolio and Project Modeling course.

DESIGNED FOR

Geologists, geophysicists, managers, team leaders, economists, and planners.

YOU WILL LEARN HOW TO

- Describe the elements of the decision analysis process and the respective roles of management and the analysis team
- Express and interpret judgments about risks and uncertainties as probability distributions and risks
- Represent discrete risk events in Venn diagrams, probability trees, and joint probability tables
- Solve for expected values with decision trees, payoff tables, and Monte Carlo simulation (hand calculations)
- Craft and solve decision models
- Evaluate investment and design alternatives with decision tree analysis
- Develop and solve decision trees for value of information (VOI) problems

Course Content

- Decision Tree Analysis: decision models, value of information (a key problem type emphasized in the course), flexibility and control, project threats and opportunities
- Monte Carlo Simulation: Latin hypercube sampling, portfolio pro- and cons, optimization, advantages and limitations
- Decision Criteria and Policy: value measures, multiple objectives, HSE, capital constraint, risk aversion
- Modeling the Decision: influence diagrams, sensitivity analysis, modeling correlations
- Basic Probability and Statistics: four fundamental rules including Bayes’ rule (the easy way), calibration and eliciting judgments, choosing distribution types, common misconceptions about probability

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houston, US</td>
<td>9-12 June</td>
<td>$4410</td>
</tr>
<tr>
<td>7-11 DEC</td>
<td>$4410</td>
<td></td>
</tr>
<tr>
<td>Kuala Lumpur, MYS</td>
<td>13-17 JULY</td>
<td>$5325</td>
</tr>
<tr>
<td>London, UK</td>
<td>5-9 OCT</td>
<td>$5135+VAT</td>
</tr>
</tbody>
</table>

Advanced Decision Analysis with Portfolio and Project Modeling – ADA

SPECIALIZED 5-DAY

Quality forecasts and evaluations depend upon well-designed project and portfolio models that are based upon clear decision policy, sound professional judgments, and a good decision process. In this course participants learn to build good models. We use the familiar Microsoft Excel spreadsheet as the platform for project and risk assessment models. Add-in software provides Monte Carlo and decision tree capabilities. The course emphasis is on the evaluation concepts and techniques, rather than particular software programs.

DESIGNED FOR

Evaluation engineers, analysts, managers, planners, and economists. This course is intended for professionals involved with developing project evaluation, portfolio, and other forecasting and assessment models. Prior background in decision analysis is expected. Before registering, please visit http://www.decisionapplications.com/adapre-read to review a course prerequisites list and to take a short self-assessment quiz. You may login using ‘ada’ (no quotes) as the password.

YOU WILL LEARN HOW TO

- Frame, build, and evaluate decision models and extract key insights
- Apply the exponential utility function for risk policy
- Design investment portfolio optimization models that include constraints, requirements, and typical interrelationships between projects
- Use decision tree software for value of imperfect information analysis
- Use Monte Carlo simulation software with optimization
- Develop quality Excel models for projects and portfolios

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houston, US</td>
<td>14-16 DEC</td>
<td>$4610</td>
</tr>
</tbody>
</table>

Fundamentals of International Oil and Gas Law – IOG

FOUNDATION 5-DAY

International petroleum transactions occur within a complex legal environment that limits what petroleum companies, host governments and service companies can do, and interprets and enforces many of their promises. Petroleum professionals often lack the broad understanding of what makes up this legal environment and how it can have an impact on their work. This course is designed to give participants a basic understanding of the legal fundamentals that make their international transactions work, including the principles that apply to interpreting and enforcing their agreements, the procedures for resolving their disputes, addressing interpretational issues posed by common contract provisions, and avoiding liability under environmental and bribery laws. The course will teach participants to confidently identify potential legal problems, address them before they become serious, and facilitate the smooth interaction between oil and gas professionals, host government representatives, and their lawyers.

DESIGNED FOR

Petroleum managers who deal with international oil and gas legal matters in the course of their business, and legal professionals with little formal, specialized training in oil and gas law, but expect to deal with international oil and gas law matters.

YOU WILL LEARN HOW TO

- Recognize differences between international legal systems and transactions
- Understand legal fundamentals behind international transactions

Course Content

- Law governing international petroleum transactions (including significant differences between various national legal systems, and the sources, principles, and limits of international law as applied to petroleum transactions)
- Interpretation and enforcement of treaties and private contracts
- Effects of international trade (and producing country) agreements such as the E.U., NAFTA, Mercosur, and OPEC
- Dispute resolution procedures, including litigation and arbitration
- Procedures under and enforcement of common arbitration provisions
- Legal defenses available to foreign companies, states and state-owned or connected entities, and recognition and enforcement of judgments and arbitration awards
- Basic legal concepts of ownership of mineral rights (onshore, offshore, and deep sea bed)
- Expropriation and compensation issues
- Elected entities and privatization
- Laws bearing on development rights
- Legal interpretational issues of common contract provisions
- International issues for service contracts
- Transfer and protection of ownership
- Environmental protection laws
- Criminal and civil liability for oil spills
- Indemnification and guaranty issues
- Bribery laws
- Marketing and transportation
- Petroleum futures

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houston, US</td>
<td>9-11 NOV</td>
<td>$3430</td>
</tr>
</tbody>
</table>

Strategic Thinking: A Tool-Based Approach – STT

SPECIALIZED 3-DAY

This course is a hands-on case-based course focused on enhancing strategic thinking capabilities of decision makers in the oil and gas industry including those responsible for building and sustaining successful strategic plans. Participants are presented with several strategic tools for analyzing different aspects of the petroleum business from both a macro and micro perspective. There is a major emphasis on understanding how the petroleum industry has developed over the last 150 years including both successful and unsuccessful strategies that were used. This provides a basis for evaluating game changers that are now transforming the industry and positioning our businesses to maximize shareholder value. Case studies during this course provide opportunities for individualized and team-based learning. Teaching approach follows an iterative process of interactive discussions, application of materials, discussion of results, and re-application of materials to new contexts.

DESIGNED FOR

Geologists, geophysicists, engineers, managers, and executives responsible for defining, assessing, and developing business alternatives and strategy in the petroleum industry.

YOU WILL LEARN HOW TO

- Summarize, present, and discuss strategic management topics and issues
- Determine the factors that influence organizations to change their level of strategic thinking
- Identify, understand, analyze, and evaluate the strategies of their own and others’ companies
- Formulate strategies for resolving their disputes, addressing interpretational issues posed by common contract provisions, and avoiding liability under environmental and bribery laws. The course will teach participants to confidently identify potential legal problems, address them before they become serious, and facilitate the smooth interaction between oil and gas professionals, host government representatives, and their lawyers.

Course Content

- Review of the history of strategic thinking
- Assessment of the petroleum industry from a strategic perspective as a supplier of energy
- Understanding of how the industry responded strategically to historical events and what are the game changers that are now transforming its future
- STEEPLE framework
- Michael Porter’s value chain analysis
- Competitive Advantage: defined theoretically and quantitatively
- SWOT (strengths, weaknesses, opportunities, threats) analysis
- Strategic thinking as a craft
- Scenario analysis and planning
- Six sigma
- Boston Consulting Group (BCG) growth share matrix
- Personal application of strategic thinking

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houston, US</td>
<td>9-11 NOV</td>
<td>$3430</td>
</tr>
</tbody>
</table>

Any course is available in-house at your location. Contact us today.
Contracts and Tenders Fundamentals – SC41

FOUNDATION 3-Day

This three-day course is designed to help companies award the right contracts to the best providers. Contracting involves many roles that must work together to negotiate, document, and ensure a reliable supply of goods and services for capital projects and ongoing operations. Everyone involved in contracting with suppliers and service providers must understand the entire process, the keys to success, and what is required of their role if contracts are to be effective in managing supply risks. Materials and exercises in this course are specifically built around oil and gas industry issues.

DESIGNED FOR

Individuals involved in any aspect of sourcing, tendering, selecting, forming, and executing contracts with suppliers of goods and services to the oil and gas industry. Included are project technical roles such as facilities engineers, drilling engineers, project engineers, commissioning engineers, contracts engineers, and planning engineers.

YOU WILL LEARN

• How to better manage project and legal risks with the contracting process
• How to successfully manage disputes and contract performance issues
• and more...

See website for dates and locations.

Effective Materials Management – SC42

FOUNDATION 3-Day

This three-day course covers practical considerations essential to achieve major improvements in planning, buying, storing, and disposing of the vast array of materials and spare parts needed in the oil and gas industry. Evolving best practices by major oil and gas companies are explored under three inter-related modules - inventory management, warehousing, and investment recovery.

DESIGNED FOR

Professional and management personnel who have responsibility for materials, spare parts, and supplies needed to support any refinery, gas plant, onshore/offshore production, or other industry operations.

YOU WILL LEARN

• How to provide better customer service for long lead or critical materials and spare parts essential to the success of any well field operation, offshore platform, refinery, gas plant, or chemical processing facility
• How to establish the best methods of inventory analysis and create performance measures for min/min and order point systems
• How to use supplier stocking programs, consigned inventory, and integrated supply agreements
• and more...

Supplier Relationship Management – SC63

INTERMEDIATE 2-Day

Continuous improvement in all aspects of the supply chain is necessary to remain competitive in today’s global economy. The traditional adversarial relationship and transactional focus of buyers and suppliers cannot meet this demand for continuous improvement in lead-time, quality, and overall supplier performance. As a result, significant changes are occurring in the philosophies and approaches that define the relationship between purchasers and sellers in world-class organizations. This focus reduces the lead-time and total cost of acquisition, transportation, administration, and possession of goods and services for the benefit of both the buyer and seller, and as a result, provides a competitive advantage and improved profits.

DESIGNED FOR

Managers and professionals involved in purchasing, projects, contracts, supply management, operations, maintenance, engineering, quality, and other activities.

YOU WILL LEARN

• The Supplier Relationship Management Maturity Model
• Importance of SRM in continuous improvement
• and more...

Inside Procurement in Oil and Gas – SC61

INTERMEDIATE 3-Day

This course will expand the industry understanding of supply chain professionals and increase their value-added in a global, fast-changing environment. Participants will learn what each industry segment requires from procurement and be given insights to maximize value delivery and increase their contribution. The course includes an online, interactive forum with the instructor, and pre-read materials designed to familiarize course attendees with relevant issues. Attendees will leave better prepared to create and support procurement strategies that meet stakeholder needs, whether for projects or operations support.

DESIGNED FOR

Supply chain professionals with 2-7 years’ experience either inside or outside the oil and gas industry.

YOU WILL LEARN

• How industry is structured, including host country and strategic relationships
• Business drivers and interface issues to be supported by procurement
• The role of industry economics in dictating procurement good practices in cost management
• Industry global compliance needs and how procurement can add value
• and more...

See website for dates and locations.

Strategic Procurement and Supply Management in the Oil and Gas Industry – SC62

INTERMEDIATE 3-Day

The development and implementation of carefully crafted strategies for the procurement of all goods, equipment, materials, and services has become a critical issue for all those in the oil and gas industry wishing to reduce operating costs while improving quality and productivity. This program explores key concepts forming the basis of strategic supply management, and moves today’s supply management organization from its typical tactical focus to the strategic focus needed to successfully implement the processes and methods needed to reach world-class performance.

DESIGNED FOR

Managers and professionals in supply management, procurement, purchasing, contracts, materials, inventory control, projects, maintenance, operations, finance, as well as all other professionals interested in lowering total cost and increasing profitability and profit contributions from better supply management operations.

YOU WILL LEARN

• Stages to world class supply management
• Skill sets in supply management
• Organizing the spend profile
• Greater abilities in lead audit continuous improvement programs
• Ways in dealing with economic uncertainties
• Questions for internal surveys to enhance purchasing performance
• How to develop a “Purchasing Coding System”
• Steps in the development of a Composite Purchase Price Index
• How to get more time to work on strategic issues
• Negotiation planning and strategies
• To understand the elements of cost that make up a supplier's price
• Categories in a purchased materials/services strategic plan outline

See website for dates and locations.

Cost/Price Analysis and Total Cost Concepts in Supply Management – SC64

INTERMEDIATE 3-Day

Managing and reducing cost continues to be one of the primary focal points of PSSM in oil and gas today. In many organizations, more than half of the total revenue is spent on goods and services, everything from raw material to overnight mail. Maintaining a competitive position and even survival will depend on the organization’s ability to use all of the continuous improvement strategies that have been developed to reduce cost across the entire supply chain for the life of the product or service. Fundamental to developing and implementing these strategies is knowledge of cost/price analysis, value analysis, and total cost of ownership concepts. This course provides the concepts that are essential skill sets in developing and implementing the strategies required to achieve the high levels of cost reductions possible from the supply chain. SC64 is also available as a 5-day in-house course with expanded content.

DESIGNED FOR

Managers and professionals in purchasing, procurement, and contracts as well as those involved in operations, engineering, maintenance, quality, projects, and other company activities that expose them to suppliers and buying activities for production, maintenance, equipment, MRO, services, and other outside purchased requirements.

YOU WILL LEARN

• Importance of price/cost analysis in continuous improvement programs
• The difference between price and cost analysis
• Methods of price analysis
• How to manage volatile markets
• Use of Supplier Price Indexes
• Methods of cost analysis
• Development of “Should Cost”
• Types of TCO models

COURSE CONTENT

Use of price indexes • Cost/price analysis • Total cost of ownership • RFG/tendering as a price analysis tool • Cost estimating relationships • Purchasing savings impact on the bottom line • Developing the spend profile • Sources of spend data • How to perform the ABC analysis • Examples of using pivot tables in Excel for data mining • Continuous improvement skill sets • Difference between cost and price analysis • Selection tool • Methods of price analysis • Historical analysis • Developing company purchase price • Index methods of cost analysis • Major elements of cost, where, and how to use “Economic Price Adjustment” clauses • Internal surveys to improve purchasing performance • Total cost of ownership concepts • Cost containment methods • Cost reductions and cost avoidance • Savings reporting procedure • Developing purchased materials/services strategic plans • Developing the purchase price index for your organization • Negotiation skill sets • Steps in negotiation preparation • Positional negotiations • Final points before the negotiation

See website for dates and locations.
Petroleum Project and Program Management Essentials – P3ME

FOUNDATION 3-DAY

Petroleum companies often use projects to develop the skills of early career project professionals. This course covers the essential skills of petroleum project and program management and provides an opportunity to apply those skills to your project. You will be able to utilize fit-for-purpose prioritization techniques and control tools to facilitate successful outcomes. The specific training received in planning, scheduling and risk management will help the early career professional make the best decisions possible. Participants will learn how the project management, HSE, engineering, operations, maintenance, procurement/supply chain, and transportation disciplines relate to one another and what tools are available to ensure interfaces among key stakeholders are managed. The course is taught using a combination of instruction, facilitated discussion, and team exercises using real-world examples related to facilities, drilling, and maintenance. The exercises will include both individual and group activities that will provide each participant with a hands-on application of the principles and practices discussed throughout the course.

DEIGNED FOR

Project managers and engineers, facility engineers, operations and maintenance representatives, schedulers, cost controllers, and purchasing personnel who plan, manage, or participate on multi-discipline teams. This course also addresses the essential requirements associated with managing programs whose timely completion is essential to the success of regional operations.

YOU WILL LEARN HOW TO

- Apply essential work management techniques to a variety of tasks
- Identify key constraints and track to develop action plans to address them
- Develop charters, scope of work, schedules and cost estimates
- Prioritize the work to best meet evolving operations needs
- Prepare petroleum project execution plans and procedures
- Utilize progress measurement and control techniques
- Use dashboards to track progress of larger programs and identify areas that need attention

COURSE CONTENT

- The petroleum project delivery system
- Organization and resources
- Engineering, monitoring, maintenance and operations
- The execution plan
- HSE and risk management
- Procurement and contracting
- Cost management
- Planning and scheduling
- Progress measurement
- Program management essentials

Petroleum Project Management: Principles and Practices – PPM

INTERMEDIATE 5-DAY

Successful petroleum operations need a blend of technology, business savvy, and people skills. If you have a firm grasp of exploration or production technology, boost its impact by applying project management techniques. Running a staged program that integrates reservoir modelling, production estimating, drilling, and facility design is challenging. The tools and techniques covered in this course will help you meet that challenge. Upon completion you will know how to make better decisions in field development that lead to high value and low cost; develop integrated plans to run the overall program; and develop key deliverables for each stage of development to reduce uncertainty. Instruction, guided discussions and in-depth work tasks are used. You may choose a case study from several real-life situations that are based on the instructor’s petroleum experience. Or you may bring the details of one of your own current programs.

DEIGNED FOR

Exploration and production personnel with a background in geoscience, petroleum engineering or drilling should attend. If you are a facilities engineer, we refer you to our Project Management for Engineering and Construction (FPM22) and Project Management for Upstream Field Development (FPM2) courses.

YOU WILL LEARN HOW TO

- Navigate the staged development process
- Manage the interfaces among exploration, drilling and facility groups
- Properly define a scope of work
- Create a realistic, integrated schedule
- Find and reduce petroleum development risks
- Develop a high-performance team
- Capture lessons learned

COURSE CONTENT

The staged development process • Scope definition • Scheduling tools • Manpower resources • Finding and mitigating risks • Learning, continuous improvement, and quality control • Project team management • Petroleum case studies and exercises

Project Management for Engineering and Construction – FPM22

INTERMEDIATE 5-DAY

Many petroleum projects fail to meet their authorized cost, schedule or operability targets. To be successful, today’s project leader needs a comprehensive set of technical, business and interpersonal skills. This course addresses those critical skills. Seasoned instructors tackle the issues and challenges found in concept selection, development planning, facility design, procurement, and construction activities. The specific training received in schedule and cost management, risk mitigation, and the proper use of scarce resources (people and materials) will help you make better decisions. Upon completion you will know how to improve engineering and service discipline work relations, use execution plans to integrate the work, and effectively employ cost and schedule control tools. This course is taught using a combination of instruction, facilitated discussion, and indepth exercises based on the instructor’s petroleum development successes and failures. The exercises will include both individual and group activities that provide you with a practical application of the principles and practices necessary to keep your project on track.

DEIGNED FOR

Project managers, facility engineers, construction representatives, schedulers, cost controllers, operations personnel, and supply chain specialists including team leaders and others who participate on or consult with multi-discipline development teams. This course is also suitable for business development, finance and land specialists as well as other non-engineering personnel who would benefit from an understanding of oil and gas project management.

YOU WILL LEARN HOW TO

- Define development stages and skillfully execute them
- Develop scopes of work and execution plans
- Utilize project control techniques and earned value analysis
- Develop engineering design checklists to ensure key deliverables for each phase are addressed
- Guide teams through technical reviews and secure needed approvals
- Measure progress during construction

COURSE CONTENT

Project development systems for the oil and gas industry • The stage-gate system • Key knowledge areas for leaders • Leadership • Design engineering • Contracting • Execution planning for design, procurement, and construction • HSE management • Risk identification and mitigation • Organization types and resource deployment • Work breakdown structure • Planning and scheduling • Progress measurement • Cost estimating • Change control • Reviews and approvals

Managing Brownfield Projects – FPM42

INTERMEDIATE 5-DAY

Why is it so difficult to manage projects inside operating facilities? Keeping the scope from growing is a constant battle. Operations priorities and maintenance needs hamper work productivity. To address these, successful brownfield projects need strong control, effective liaison, and good interface management. They must be managed differently than greenfield projects. Experienced instructors will share tools and techniques that will help you work in this dynamic, operations-centric project environment. Upon completion you will know how to examine existing documentation and confirm field conditions to improve scope control, frame a project and select the best concept for development; and coordinate the work effectively with operations, maintenance and shipping. Instruction, guided discussion, and in-depth work tasks based on the instructor’s brownfield project management experience are used. Offshore and onshore examples are used. The sharing of experience in this course make the sessions challenging and insightful.

DEIGNED FOR

This course is for team members that work projects installed in existing facilities. Engineers, operations leaders, and maintenance reps should attend. Services personnel in cost, schedule, procurement, and quality functions will also benefit. This course helps business, commercial and finance and other non-engineers who want a greater awareness of brownfield project challenges.

YOU WILL LEARN HOW TO

- Deal with competing priorities
- Stage development to manage plant complexity
- Minimize surprise work with due diligence surveys
- Resolve issues using an oversight board
- Tailor contracting strategy for brownfield projects
- Tackle unique brownfield constructability issues
- Ensure operations staff buy into objectives

COURSE CONTENT

Brownfield gate stage system • Staffing the team • Communications needs in an operating facility • Challenges in concept choice • Key value improving practices • Due diligence in the existing facility • Quality in engineering, procurement, and construction • Increased brownfield risks • Change management • Contract strategy • Procurement, logistics, and material management • Construction management and HSE • Managing cost/ schedule expectations • Performance reporting • Commissioning and startup • Roles and qualities of successful project managers

2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON, US</td>
<td>26-30 OCT</td>
<td>$4510</td>
</tr>
<tr>
<td>LONDON, UK</td>
<td>8-12 NOV</td>
<td>$5235+VAT</td>
</tr>
</tbody>
</table>

* plus computer charge
Project Controls for Capital Projects - PC21

INTERMEDIATE 3-Day

This course addresses project controls principles and practices as they relate to providing project leaders and key stakeholders the information they need to support project success for upstream, midstream, and downstream energy projects. The focus of the course is using project controls effectively to manage engineering / procurement / construction, improve project profitability, make schedule, and deliver a quality and safe project. Upon completion of this course, the participant will understand the critical success factors for cost estimating, scheduling, and progress measurement and be able to utilize these best practices to effectively manage their project. Participants will understand all of the steps necessary to develop and implement an effective project controls plan. Project controls activities throughout the entire project lifecycle (FEED, engineering, construction) are addressed. In particular, participants will learn the steps that a project leader should take during each stage of the project life cycle to effectively manage their project and their contractor.

DESIGNED FOR
This course addresses the special requirements associated with project controls for project professionals. It is intended for project managers, project engineers, project team members, project controls professionals, planner/schedulers, and project discipline team leaders.

YOU WILL LEARN
• The elements of a robust cost estimate plan
• Methods to develop early and mid life cycle project cost estimates
• The critical role that project controls plays in developing a well-planned and executable project for both cost and schedule
• The role that project definition, scope management, contracting strategy, project execution, procurement, etc. play in impacting project controls and the methods used to measure progress
• Critical progress measurement metrics using earned value or value of work done so that stakeholders understand the potential to meet project cost and schedule
• The different estimate classes and the deliverables required to support each type of estimate
• The different schedule levels and when is it appropriate to use each level
• How to develop an estimate basis and schedule basis and why they are critical to developing an achievable cost estimate and schedule
• How to develop a robust Project Controls Plan and associated staff with roles and responsibilities to support the plan
• How to effectively manage project changes and understand the impact on overall cost and schedule
• Challenges and issues associated with forecasting final project cost and final project completion using progress measurement or earned value
• and more...

Turnaround, Shutdown and Outage Management – TSON

INTERMEDIATE 3-DAY

Scheduled turnarounds are difficult to manage. Managing a surprise shutdown or outage is like firefighting. Firefighters succeed because they know what strategies work and are highly trained to handle complex, risky situations. Uncertainty and complexity abound when a plant is down. Extra work can appear when equipment is opened and inspected. Integrating project work increases the challenge. Experienced instructors show you how to control scope uncertainty, tackle the complexity of integrating project work, and get the facility restarted. Upon completion you will know how to deploy scarce resources (time, people and materials) to complete work on time and within budget; utilize best practices in TSO planning, execution and closeout; and manage engineering, maintenance, operations and project interfaces. A blend of instruction, guided discussion, and hands-on exercises using real world examples makes the sessions thought provoking. The exercises will include both single and group activities.

DESIGNED FOR
Managers, supervisors, engineers, schedulers in maintenance, operations, reliability, HSE, procurement and projects should attend. This course also helps business, commercial, finance and other non-technical personnel who want to know more about turnaround, shutdown and outage best practices.

YOU WILL LEARN HOW TO
• Establish targets to ensure support from all facility stakeholders
• Develop a robust resource plan and get the resources you need
• Integrate scopes for both maintenance and projects
• Establish turnaround scope selection criteria early
• Select a computerized work system
• Address key outage constraints and operations interfaces
• Develop a robust contracting plan
• Prepare an execution plan
• Measure and control shutdown progress

COURSE CONTENT
Six-phases of turnaround, outage and shutdown management • Issues and challenges • Quality control • Health, safety and environmental planning • Computerized systems benefits and choices • Integrating the plan • Managing stakeholders and resources • Procurement and contracting • Tracking progress and controlling change

Advanced Project Management – FPM62

SPECIALIZED 5-DAY

Mega projects are complex. A program composed of these super projects is highly complex. For a very large project, addressing linked issues is key to improving the chances of success. In a larger program, these key issues interact producing unexpected results. Instructors will explore critical issues in contracting, decision making, and facility design. Interface control and risk reduction are examined. Non-technical problems in stakeholder relations, partner ventures, and approvals, are also tackled. Upon completion you will know how to deal with the program complexity and surprise effects; improve program strategies and deliver the projects on time; address both project and program resource concerns. Instruction, guided discussion, and in-depth work tasks based on the instructor’s petroleum experience are used. The work will include both single and group activities.

DESIGNED FOR
Experienced project managers, project engineers, project controls managers, and construction managers who are working on large international projects or about to start new assignments on international projects. Practical case studies will cover the entire spectrum of a large international project and will include offshore and onshore capital investment.

YOU WILL LEARN
• Why international projects fail and the early warning signs to look for
• The principles of project management that ensure project success
• How to build a strong and effective Project Management Team (PMT)
• How to identify and manage project stakeholders
• How to conduct business and yourself in the international arena
• How to select an effective contracting strategy and the appropriate negotiation style
• The practical approach for global engineering, procurement, logistics, fabrication, construction, and commissioning
• How to conduct project risk management throughout the entire project lifecycle
• How to apply effective leadership and strategy on your international project

COURSE CONTENT
Why projects fail • Project Management principles (PMT scope, cost, schedule, safety, and quality) • Stakeholders management on international projects • Host country - business and culture contracting • Strategies and negotiations • Global engineering - from concept through detailed design procurement and logistics • Fabrication, construction and commissioning • International project risk management • Leadership and strategy
Advanced Project Management Workshop – APMW

SPECIALIZED 3-Day

This course will not follow the traditional lecture-style format, instead it will be an interactive hands-on workshop where the participants will work on several case studies directly related to the selected topics. This workshop will take an EPC contractor perspective while also highlighting how Owner companies (NOCs & IOCs) interact with their EPC contractors to develop and execute their projects. The workshop material covers both onshore and offshore projects. The main objective of this workshop is to present several real-life scenarios of different types of project issues encountered by contractors and work through these issues to show how they should be addressed to arrive at an optimum resolution. This workshop will focus more on practice and less on theory. In addition to the case studies created and provided by PetroSkills, it is recommended that attendees provide a few scenarios from their current or past projects to be used in the workshop as case studies.

DESIGNED FOR
This course is designed for senior project management staff of EPC contractors working on large international projects in the energy industry with a focus on the Middle East Region. It is recommended for experienced project managers, project engineers, project control managers, construction managers and discipline leads.

YOU WILL LEARN HOW TO
- Allocate contract risk between owner and contractor
- Address terms and conditions at bidding stage
- Handle owner-provided FEED as basis of bid
- Finalize terms and conditions before contract signing, contract administration, and records keeping
- Understand and negotiate liquidated damages applied to project milestones
- Handle change orders, suspension of work by owner or contractor, and contract termination for cause or convenience
- Prepare for dispute resolution and claim by contractor
- Determine when negotiation, mediation, arbitration, and litigation are necessary
- Identify governing laws in the contract
- Determine cost of claims and who is responsible for payment
- Protect yourself from claims by owner against contractor
- Prevent claims where possible
- Identify project risks and determine their impact during engineering, procurement and construction phases
- Apply risk management on a project at the right time
- Identify, assess, and mitigate project risks
- and much more...

COURSE CONTENT
Why projects fail • EPC contracts • Dispute resolution and claims • EPC risk management • Scoping – Procurement and schedule management • Project planning and execution • Working with owner (client) and their PMC. You Will Learn How To
- How to control the cost and schedule impact on a project or project phase
- How to manage changes to minimize their impact on project scope, cost, and schedule
- How to handle claims from both the client and the contractor
- The ‘Fatal Four’ issues associated with construction personal safety
- How to use field project controls and progress monitoring to ascertain construction areas that are challenged and require immediate attention
- Methods to manage the contractor to minimize construction claims and how to handle a claim once it occur
- and much more...

2020 Schedule and Tuition (USD)

Petroleum Project Changes and Claims Workshop – PPCC

SPECIALIZED 3-Day

This course will cover all key aspects of project changes and claims encountered throughout a project lifecycle. The focus will be on how to manage and control changes, take steps to prevent disputes and claims, and how to prepare claims. Different contract types will also be covered along with the required terms and conditions for project changes, disputes and claims. This course will not follow the traditional lecture-style format, instead it will be an interactive hands-on workshop where after a brief slide presentation for each agenda topic the participants will work on several real-life case study scenarios directly related to the selected topics. The workshop will cover both onshore and offshore projects.

DESIGNED FOR
Project managers, project control managers, project engineers, discipline leaders, procurement managers, contract managers, and construction managers and supervisors working on large onshore or offshore oil and gas projects.

YOU WILL LEARN
- What causes changes, disputes and claims on a project
- How to manage changes to minimize their impact on project scope, cost and schedule
- How to control the cost and schedule impact on a project using earned value
- An overview of contract types, negotiations and alternate dispute resolutions
- Key steps to take for claim prevention
- How to prepare a claim - type of claim, main elements, and the PMT role

COURSE CONTENT
What causes change on a project and can change be avoided • Change management and controls • Cost and schedule management of changes using earned value • Types of contracts and relevant terms and conditions - from tender to award • Negotiation techniques and alternative dispute resolution • How to avoid disputes on a project • Types of project claims and their characteristics • Claims prevention • Claims preparation • Case Study Problems - will cover topics listed in the agenda and will include both onshore and offshore scope

2020 Schedule and Tuition (USD)
ADD ‘PEOPLE SKILLS’ TO YOUR TECHNICAL SKILLS

PetroSkills Petroleum Professional Development courses provide the people skills to help you and your team maximize your capabilities. These courses are tailored specifically to the oil and gas industry, and are available worldwide.

ESSENTIAL LEADERSHIP SKILLS FOR TECHNICAL PROFESSIONALS-OM23
Skillful and competent leadership is extremely important for safety, productivity, and asset management. The 21st century brings new emphasis on leaders, new communication technologies, increased focus on safety, information overload, workforce dynamics, asset integrity, and many other concerns which challenge even the most proficient leader/manager. How do we blend these new challenges with tried and true wisdom of success? There are skills to learn to help you be more effective, with less stress. (See page 24.)

ESSENTIAL TECHNICAL WRITING SKILLS-ETWS
Writing for work-related purposes ought to be brief, clear, informative and, above all, readable. In this practical hands-on course, you gain a solid foundation in technical writing skills. The primary theme for the course is that a writer must think constantly about their readers. Examples and exercises provide hands-on experience.

MAKING CHANGE HAPPEN: PEOPLE AND PROCESS-MCPP
Attendees will work in teams to overcome the problems encountered when making changes in their organizations. You will learn how to develop the ability to effectively handle organizational changes by examining the eight-step change process and understanding your own, and others, needs and responses to each step.

MANAGING AND LEADING OTHERS-MLO
The first-line and mid-level supervisor has more direct effect on employees and the productivity of a work group than any other single entity in the organization. This course increases the confidence and productivity of leaders, supervisors and managers who may be scientific or technical specialists, but have minimal training in the science and art of leading others.

MEETING MANAGEMENT AND FACILITATION FOR THE PETROLEUM INDUSTRY-MMF
Meetings remain a boon or curse to corporate communication. Properly planned and managed, meetings are extremely positive and dynamic ways to exchange ideas, shape policy, resolve problems, effect change, etc. However, when poorly designed and implemented, meetings become virtual breeding grounds for confusion, tension, frustration, boredom, and negativity. During this interactive 2-day session, participants will learn how to perfect meeting facilitation skills; master meeting agenda design skills; and polish meeting communication skills so that they’ll be able to run meetings efficiently, effectively, and smoothly.

NEGOTIATION SKILLS FOR THE PETROLEUM INDUSTRY-NSPI
This course helps you to develop strong interpersonal skills in the art and science of negotiation. You will learn to apply these skills to complex organizational issues and individual needs. The course includes a Negotiating Style Profile self-assessment to determine your preferred negotiation style(s). Various tools and techniques are used to negotiate differences and disagreements to produce positive results. A group workshop conducting a collaborative negotiation, allows attendees to engage in, comment on, and improve their competencies in negotiation skills.

PRESENTATION SKILLS FOR THE PETROLEUM INDUSTRY-PSPI
One of the prime requisites for oil and gas professionals is to be able to deliver presentations in as clear, concise, and well-designed a way as possible. With the proper training and practice, any oil and gas professional can learn to make a convincing and persuasive presentation, and do so in a confident, assured, comfortable, and relaxed manner.

TEAM BUILDING FOR INTACT TEAMS-TB
This workshop is most effective when attended by an entire team. Team members will develop and refine the skills essential for high performance teams. Emphasis is placed on learning more effective ways to enhance total team functionality and maximum team productivity.

TEAM LEADERSHIP-TLS
This course has been constructed to maximize opportunity to improve both knowledge and practical skills in leading a team and being a team player. Emphasis is placed on the leader’s role in effectively enhancing total team functionality and maximum team productivity.

Go to www.petroskills.com/ppd to register or for more information!
Basic Petroleum Technology Principles – BPT

BASIC 20 HOURS

PetroAcademy

This course will be delivered virtually through PetroAcademy providing participants with the knowledge they need at their convenience.

This course provides the participant with an understanding of basic petroleum technology in the context of the Petroleum Value Chain, from exploration to abandonment. The participant will understand how and when geoscience and engineering professionals use technology to find, then determine and optimize the economic value of an oil and gas field. This enables the participant to maximize their professional and administrative contribution in their organization.

DESIGNED FOR
Those who need to achieve a context and understanding of E&P technologies, and the role of technical departments in oil and gas operations. An understanding and use of oilfield terminology is developed.

YOU WILL LEARN
• Historical petroleum occurrences and usage
• The objectives and processes of the exploration phase of the E&P asset life cycle
• The objectives, processes, and economic metrics of the appraisal phase of the E&P asset life cycle
• Basic reserves and production volume concepts
• The Earth’s structure, continental drift, and plate tectonics role in oil and gas exploration
• Rock types and classification in an oil and gas context
• The relationship between depositional environments and geological settings
• Exploration concepts
• Elements of a successful petroleum system
• Key differences between unconventional and conventional petroleum systems
• Features of structural contour and isopach maps
• The basic reservoir rock properties and the significance of core samples
• The roles involved in exploration
• Rig type classification and selection for onshore and offshore drilling
• and more...

COURSE CONTENT
E&P industry and asset life cycle • Petroleum geology • Hydrocarbon reservoirs • Rock and fluid properties • Surface/subsurface exploration • Drilling operations and well completions • Production operations

Self-paced, virtual course
- start anytime. Tuition USD$3570

FOR MORE INFORMATION, VISIT PETROSKILLS.COM/BPTONLINE

Basic Petroleum Technology – BPT

BASIC 5-DAY

This course provides the participant with an understanding of basic petroleum technology in the context of the Petroleum Value Chain and Asset Management, from exploration to abandonment. Unconventional shale (tight oil and gas) and conventional oil and gas are covered. The participant will understand how and when geoscience and engineering professionals use technology to determine and then optimize the economic value of an oil and gas field. This enables the participant to maximize their professional and administrative contribution in their organization. Participants first learn and understand why various global oil and gas production types and plays (unconventional and conventional) have different value. The participant learns which technologies are used by the geoscience and engineering departments during each stage of the asset life cycle and why this E&P lifecycle context accelerates an understanding of basic petroleum technologies and the oil industry. This learning is achieved through guided discussions, videos, animations, and progressive team exercises utilizing “Our Reservoir” and “Our Well” as working models.

DESIGNED FOR
This course is appropriate for those who need to achieve a context and understanding of E&P technologies in conventional and unconventional fields, and/or the role of technical departments in oil and gas operations, and/or be able to understand and use the language of the oilfield.

YOU WILL LEARN
• The E&P Process and how it differs in conventional vs unconventional plays, the role of each technical department and specialist, and the technologies used
• The economic value and properties of reservoir fluids
• Petroleum geology for exploration and production
• About oil and gas reservoirs, both conventional and unconventional, and understand the key differences
• Exploration and appraisal technologies
• Drilling operations for exploration, development and production
• Production – well completions and production technology
• Reservoir recovery mechanisms through primary, secondary, and tertiary recovery
• Surface processing of produced fluids

COURSE CONTENT
World hydrocarbon production and consumption review including reserves, benchmarks, and the impact of shale resources • Reservoir fluid properties • Petroleum geology • The petroleum reservoir, conventional and unconventional • Exploration technologies for conventional and unconventional reservoirs including initial reserve estimates and consequent field development • Drilling and operations • Well completions and workovers • Production operations • Reservoir recovery mechanisms • Surface processing

Overview of the Petroleum Industry – OVP

BASIC 2-DAY

OVP presents an overview of the Petroleum Industry from the point of view of the Asset Life Cycle. Participants will gain an understanding of Exploration, Appraisal, Development and Production phases with particular emphasis being placed on actions they can personally take within each phase to support value creation. Through use of lecture, multimedia and class interactive exercises, a breadth of upstream business acumen will be delivered covering economic, business, geoscience and engineering topics. Discussions will include topics related to all types of resource plays including deepwater, shale oil/gas and enhanced oil recovery technologies.

DESIGNED FOR
Both technical and business oriented professionals who are either new to the upstream oil and gas industry or experienced in one part, but could benefit from a wider point of view. OVP will likewise deliver for non-industry personnel a broad, basic knowledge set of multiple E&P topics. Legal, Financial, Accounting, Management and Service Company team members will certainly benefit.

YOU WILL LEARN
• The critical importance the industry plays on the world’s economic stage, including discussions of pricing, global reserves and key short/long-term energy trends.
• Business and exploration elements critical to the success of organizations in search of new reserves
• Methods by which new field prospects are evaluated and risk factors assessed (Geology, Geophysics, Petrophysics)
• How exploration rights are acquired (Land themes, International Concessions)
• The basic process for drilling and evaluating an exploration well (Drilling, Petrophysics, Testing)
• Major steps required to appraise a new discovery and estimate its commerciality (Reservoir Engineering)
• Strategies to maximize the value of an oil or gas field asset
• How geology and reservoir management plans are used to guide new field development
• Major steps in the design, construction, and commissioning of facilities
• Basic technical and operational steps required to produce an oil or gas field (Production Engineering)
• Types of opportunities to optimize older fields and increase production

COURSE CONTENT
• The business of E&P • Hydrocarbon origin • Exploration – acquisition of exploration/development rights • Exploration – prospect generation and evaluation • Appraisal – asset characterization and reserve quantification • Development – drilling, completion, and facilities • Produce Asset – recovery optimization strategies

Operations Crew Resource Management – OCRM

INTERMEDIATE 3-DAY

Why do experienced, competent personnel make mistakes during the planning or implementation of operations? How does an organization address these potential mistakes? High-risk industries introduce and practice non-technical skills (NTS) coined as Crew Resource Management (CRM) to address human errors. In the late 1970s, the airline industry was plagued with many crashes and resulting fatalities. Often investigations yielded no evidence of design or mechanical failures, rather poor or inconsistent decision making was the major contributing factor to the incident (e.g. poor communications, distractions, leadership actions, lack of teamwork, changing situation without knowledge, stresses, and fatigue played a role in the incidents). The industry came together focusing on six non-technical skills, naming the effort CRM. After 40 plus years, CRM is still a major component of all airline industry training. Other high-risk industries began to incorporate CRM into their organizations to reduce the number of incidents. However, of recent, those and other industries have seen performance improvements with the incorporation of CRM. Introducing and practicing NTS has reduced nonproductive time thus improving performance delivery. The oil and gas industry has only recently started to introduce CRM skills. Initially the industry introduced CRM/NTS into well control training post the Deepwater Horizon (DWH) incident, since then, many DWH investigations and reports referenced human factor causes. IADC and IWCF have accredited enhanced well control training which requires CRM/NTS components. Several operators and contractors have started to include CRM/NTS in their “drill the well on paper” or “drill the well on simulator” exercises, recognizing non-productive time improvements.

COURSE CONTENT
Situational Awareness (gather information, share understanding, possible consequences, problems and contingencies) • Decision-Making (define situation and goal, previous experience, risks, options, check) • Communications (exchange information, explain context, clear and concise, relevant inclusion) • Teamwork (responsibilities, co-ordinate tasks, resolve gaps/duplications, working relationships, support efforts) • Leadership (take charge, provide direction, prioritize tasks, lead, organizational process) • Stressors/Factors that Impact Human Performance (identify, mitigate, practice resilience, recognize efforts)

Self-paced, virtual course
- start anytime. Tuition USD$3570

FOR MORE INFORMATION, VISIT PETROSKILLS.COM/OCRMONLINE
How can you accelerate competency and eliminate travel expenses?
Add e-Learning from PetroSkills to your development programs!

ePilot™
Online Learning for Operations & Maintenance

ePilot™ is over 1400 hours of technical skills and safety training used at over 500 sites worldwide. Topics include:

- Core Competency
- Electrical
- Gas Processing
- Health, Environmental, Safety, and Security
- Instrumentation
- Mechanical Maintenance
- Pipeline Fundamentals
- Process Operations
- Production Operations
- Refinery Operations
- Refinery Process Units
- Rotating & Reciprocating Equipment
- Stationary Equipment
- Turnaround Planning

ePetro™
Online Learning for Petroleum Professionals

ePetro™ is ideal for both technical and business-oriented professionals who are either new to the petroleum industry or could benefit from an industry overview. The series incorporates information for geosciences, reservoirs, production, drilling, completions, and field development and includes:

- Oil & Gas Industry History
- E & P Asset Life Cycle
- Reservoir Fluids
- Exploration & Appraisal
- Development & Production
- Mature Assets & Abandonment
- Midstream
- Gas Manufacturing
- Refining
- Petrochemicals

For more information, visit www.petroskills.com/elearning or email solutions@petroskills.com
MR. STEPHEN ASBURY is the author of six internationally published books on safety and risk management, and a highly experienced HSE practitioner and instructor. He is a Chartered Safety and Health Practitioner (CFIOSH), a Chartered Environmentalist (CEnv, FIEMA), and a Professional Member Emeritus of the American Society of Safety Engineers. Awarded the IOSH President's Distinguished Service Award in 2010, and an honorary Professor and Instructor (2007-present) on our safety and HSE management programs. He has over 30 years’ risk management experience gained working in leading organizations, in consultancy, and in the London insurance market, where together, he has worked in over 70 countries on five continents. Stephen is a former member of the IOSH Council of Management (1998-2013), and three-times chair of its Professional Committee. Outside of PetroSkills, he is a director of AllSafe Group Limited, a leading international HSE consulting company. In addition to his books, Stephen has published in over 40 technical papers and journal articles. He was awarded an MBA with Distinction (Leicester, 1995), and is presently completing a PhD (London). His first qualification was in law.

DR. FRANK ASHFORD has over 50 years’ experience in oil and gas reservoir engineering, downhole and surface design and operations, as well as oil and gas conditioning and gathering facilities. He has been with PetroSkills since 1988 and has worked extensively in most energy producing countries. He provides instruction frequently in English, Spanish, or Portuguese. He worked with Gulf Research (GR&D) in Houston, Texas where he developed many reservoir engineering laboratory techniques for the determination of applicable oil/gas/water relative permeability correlations, and choke performance prediction techniques still in application today. Dr. Ashford was a Professor of Petroleum and Natural Gas Engineering at the Central University of Venezuela (UCV) where he has taught many courses in natural gas engineering technology. He was a founder of the Petroleum Engineering Department in INTIVEP, the research Institute for PDVSA (Venezuela). He was a participant in the initial gas lift optimization operations held in Venezuela, and developed many field, and numerical journal articles. He holds a BS (1961) and MS (1963) in Petroleum Engineering and a PhD in Engineering Sciences (1970) from the University of Oklahoma. He was one of Dr. John M. Campbell’s graduate students from 1962-1968, and participated in the initial gas lift optimization operations held in Venezuela and wrote the original John M. Campbell technical textbooks on Gas Conditioning and Processing, Volumes I and II.

DR. OMAR BARKAT is a registered and licensed Professional Engineer and the Executive Director for Upstream Operations with PetroProTech. He has been a training specialist and technical consultant for OGCIPetroSkills since 1997. He has over 28 years of combined industrial and academic experience in the USA, North Africa and Europe. He has been an active international oil and gas consulting engineer since 1993 involved in projects related to surface production operations, upstream facilities, field development, oil and gas production systems performance optimization, equipment selection, petroleum fluids treating and processing and fluids disposal management. From 1980 to 95, he worked on several oil and gas production technical issues and led research and development projects in areas such as: cement slurries, hydraulic fracturing fluids, proppant transport, emulsions, drilling muds, formation damage, cuttings transport, H2S/CO2 corrosion, fluid flow and rheology, drag and pour point reducing agents and petroleum processing. He has successfully designed and delivered several short courses, seminars and lectures in a variety of gas production topics throughout the world. He is a former tenured university full professor in Louisiana and Oklahoma, a current member of several international societies including SPE, AIChE, ACS and ASEE, and a member of the US National Engineering Honor Society Tau Beta Pi. He is an Adjunct Professor of Petroleum Engineering at the University of Tulsa and a member of its Industrial Advisory Board. He is the author of numerous technical publications, the recipient of several professorships, research, teaching and merit awards and listed in the Who’s Who in Science and Engineering. He is a Chartered Engineer, member of the Chemical Engineering State Diploma from the National Polytechnique School of Algiers, an MS and a PhD from the University of Tulsa.

MR. PAUL M. BARRY is a petroleum engineering consultant specializing in production technology, production operations, and project evaluations. Mr. Barry has over 42 years of international and domestic USA upstream oil and gas production and reservoir engineering and management experience in conventional and unconventional reservoir development. Assignments include working and residing in South America, SE Asia, the Middle East, the North Sea region, and the USA. Earlier industry experience was as field production engineer and field production engineering manager of an onshore oilfield re-development project for PDVSA and partners in Venezuela which required a combination of new development well and well re-completion designs for gas lift, submersible pumping, and rod pump artificial lift technology, and frac pack and gravel pack sand control well completions. Previous Indonesia experience was in the design and completion of dual string, multiple selective, underbalanced, tubing conveyed perforated high pressure gas production wells, re-completion well now pack completions, internal and external wellbore and well and flowline corrosion control systems, and, as Mobil Oil facilities engineer in the Arabian American Oil Company (Aramco) Gas Projects department. He has represented company technical and commercial interests in both UK and Norwegian North Sea sectors oil and gas producing fields. Mr. Barry has served as an officer in the Jakarta and Dubai SPE sections. He holds a BS from the University of Notre Dame and an MSCE from Marquette University, and is a registered Professional Engineer in Colorado, USA.

MR. ROBI BENDORF, CPSM, MCIIPS, CPM, M.Ed., has over 35 years of purchasing and sales experience, involving domestic and international activities, for a broad range of manufacturing and service businesses. He has extensive experience in consulting and training in purchasing contracts, reengineering the supply management process, the management of procurement functions, global sourcing of materials and components, reducing cost of purchased materials and services, and negotiation of complex transactions and contracts. He has held purchasing and contracts management positions in high volume manufacturing, subcontract, job shop, and service operations, involving gas turbine manufacturing, power generation, nuclear and fossil power plants, electrical distribution and control, air conditioning equipment and global sourcing services. He served as Manager of Customer and Supplier Development for the Westinghouse Trading Company. He has given presentations on numerous purchasing and contract management topics to the Institute for Supply Management (ISM/NAPM), major universities, and numerous in-house seminars for industrial and services clients in the US and over 170 public seminars internationally. He was selected to present seminars at the last 17 Institute for Supply Management (ISM/NAPM) Annual Conferences and is the contributor of numerous articles published in Purchasing Today and Inside Supply Management. Robi was selected as ISM’s National Person of the Year in both Global Resources and in Education/Learning. Robi is a lifetime CPM, and has received ISM’s new certification, the CPSM, and also holds the MCIPS Certification as awarded by CIPS. He has an undergraduate degree from the University of Texas, and a Master’s Degree from Penn State University. His energetic and enthusiastic style, combined with extensive functional experience, makes him an excellent consultant, trainer, and facilitator of change.

MR. ROBERT BOMBARDIERI has almost 30 years in the oil and gas industry. His expertise is the use of process engineering to optimize operating facilities economics via addressing availability, product recovery and bottleneck issues. As such, Robert has tested, identified, designed, project managed and lead implementation of numerous molecular sieve, NGL recovery, sulfur recovery and debottleneck projects in several countries. He also has had roles in operations, business development and management. Mr. Bombardieri co-authored a paper on molecular sieve dehydration that was selected “Best Paper Award” at the 2008 Gas Processors Association’s annual convention and was published in the Oil and Gas Journal. He has a B.Sc. in Chemical Engineering from the University of Alberta and an M.B.A. from Tulane University.

MR. MARK BOTHAMLEY has experience that covers the areas of design, operation, troubleshooting and optimization of offshore and onshore oil and gas production and treating facilities. Prior to joining PetroSkills he was with BP/Amoco for 24 years, in several locations around the world. Mr. Bothamley is a past chairman of the SPE Facilities Subcommittee and a former member of the GFPS Data Book Editorial Review Board. Mr. Bothamley holds a BS in Chemical Engineering from Lakehead University in Thunder Bay, Ontario, Canada, and a Diploma in Natural Gas and Petroleum Technology from the British Columbia Institute of Technology in Vancouver, BC Canada.

MR. JOHN C. BOURDON has more than 29 years’ experience in hydrocarbon processing and specializes in sulfur recovery processes for the petroleum refining industry. Mr. Bourdon has been involved in the development of several sulfur-related technologies and mechanical innovations, has authored several papers and made presentations worldwide. He has experience with several E&C firms including extensive start-up and troubleshooting activities. He consults for both North American and international clients. He is a registered
MR. JOHN CURRY

MR. JIMMY CLARY

MR. WILLIAM (BILL) DOKIANOS has over 35 years experience in engineering, production and pipeline. He is a Professional Engineer in the states of Louisiana and New Mexico, and holds a General and Commercial Contractor License in the State of New Mexico. Over the last 17 years he has been instructing for PetroSkills | John M. Campbell Inc. in the areas of Kathryn Book, Well & Production, ‘Processing Facilities’. He has actually consulted over the past 10 years with ExxonMobil, Shell Exploration and Production, Sandridge Energy, Repsol and Chevron. Mr. Dokianos onshore consulting has focused on optimizing production utilizing reservoir and production engineering, designing and reboring gun barrel design for better separation, optimization and production troubleshooting (bad oil and bad water). His offshore experiences include analyzing and solving poor platform up time at GB 128, GC 65 and other fields. Among his most significant developments in the industry are solving poor platform up time at GB 128, GC 65 and other fields. Among his most significant developments in the industry are:

- Redesigning water treatment systems, which were installed in the Gulf of Thailand to remove mercury and arsenic as well as residual oil from the produced water. At Natco Group he developed an effective vertical column flotation vessel design and he was responsible for designing and implementing treatment equipment as well as design new equipment. He was an SPE Distinguished Lecturer on Produced Water Treatment in 2009-10, and serves on the SPE Steering Committee for their Global Workshop Series on Water Treatment. He has field/operational experience in oilfield chemistry, design of process equipment, and development of process systems has provided him with unique insights.

MR. WOLFGANG FOERG has over 20 years’ experience in plant system design, control system design and selection, procurement, engineering management, and installation and commissioning of vendor proprietary equipment. His experience includes assignments as project engineer, project lead engineer, major EPC contractor, as well as experience in construction, module design, commissioning and startup of plants. The types of plants include separation plants for natural gas, gas storage facilities, power generation, MTBE plants, refinery wastewater treatment, and hydrocarbon transfer projects.

MR. ERIC A. FOSTER is a Geoscientific Technical Advisor with PetroSkills-GOGI based in Houston. He has 40 years of operations and management experience in the oil and gas industry. Prior to joining PetroSkills, he was the Chief Landmark and responsible for managing geoscience and engineering consultants, representing geological, geophysical and petrophysical software applications and services for global operations. Starting as a geologist in field operations from the basin of Mexico to the basin of the Gulf of Mexico, he then worked as a training instructor and coordinator for worldwide operations at Core Laboratories in Dallas and subsequently moved to Calgary as Manager, Geological Operations. His background has included all aspects of reservoir characterization, and he has been responsible for designing software to geological and drilling engineering data acquisition and interpretation. He has acted as a technical advisor/consultant on projects throughout the world and has extensive experience in the design and delivery of training programs for oil and gas industry. Mr. Foster graduated from the University of Missouri in Chemical Engineering and Chemistry and is a Certified Safety Trained Supervisor (STS).

MR. WOLFGANG FOERG

MR. ERIC A. FOSTER

MR. TIMOTHY FOX

MR. BILL FINCH is a passionate leader on offshore oilfield, gas field, and pipeline operations. He is driven to deliver results through an action bias, is committed to safety, and strongly believes in engineering and leadership collaboration. His core competencies include engaging people in the workplace and building competencies. He uses a pragmatic, practical approach to engineering support and work processes. Regarding operational discipline, Bill uses continuous improvement principles to implement fully effective business solutions. His core competencies include a strong process engineering background, leveraging human capacity, operational knowledge, building competency, decision making, translating strategy to delivery, system integration, teacher/coach, and risk management. Bill is a registered Professional Engineer in Louisiana, Montana, and Texas. He has a BS in Chemical Engineering from Montana State University and post graduate work toward an MSCE at University of Houston.

MR. JOHN CURRY

MR. JIMMY CLARY

MR. WOLFGANG FOERG

MR. ERIC A. FOSTER

MR. TIMOTHY FOX

MR. BILL FINCH
into the issues that challenge operators as their water production and water treatment complexity and cost escalates over time.

MR. RONALD FREND is a registered engineer, and has extensive engineering and management experience in the oil and gas sector. He rose to a senior position in Shell International (Middle East) before opening a worldwide engineering consultancy based in London. His entire career has been in the technical and management aspect of maintenance and engineering from a solid business foundation. Ron has been experienced in a variety of maintenance analytical techniques as well as possessing management skills suitable to a large multi-national corporation working in the oil and gas sector. He has also undergone specialized training on the following topics: management techniques, non-destructive testing, oil tanker cargo operations, instrumentation and control, resistance and gas welding, vibration analysis, infrared thermography, and pitotronics. He is a Registered Engineer with an MSc from Huddersfield University in England as well as being a certified Chief Engineer Officer (marine). Ron is currently Technical Director of Facilities Training for PetroSkills with special responsibility for Mechanical Engineering training.

MR. RICHARD (RICK) GENTGES has over 36 years experience in the design, construction, and operation of underground gas storage facilities. His experience includes assignments in technical support, engineering management, and project management. Most recently (2010-2012) he served as Senior Project Manager for Cook Inlet Natural Gas Storage Alaska, LLC, and was responsible for mechanical, electrical, and instrument and controls. The early portion of his career was spent working for a large commercial underground gas storage facility in Alaska. From 1982-2010 he worked for ANR Pipeline Company where he held various technical and managerial positions involving gas storage assets. His technical experience includes performing and analyzing well tests, reservoir performance analysis, reservoir simulation, and overall storage facility optimization. During his career he managed construction projects that involved enhancements to existing gas storage facilities and construction of new gas storage facilities. The scope of construction projects included the drilling and completion of vertical and horizontal wells, upgrades to gathering systems, new compression, and gas processing equipment. Mr. Gentges is a past Chair of the Underground Gas Storage Committee of the American Gas Association (1994). He also served as Co-Chairman of the Underground Gas Storage Research Committee for the Pipeline Research Council International (1998-2003), and served on the National Petroleum Council Gas Storage Team (2003-2004). Mr. Gentges holds a BSc in Chemical Engineering from the University of Illinois, Urbana-Champaign.

MR. ANDY GIBBINS is an experienced and highly motivated oil, gas and petrochemicals consultant, with experience in upstream and downstream. Andy worked for many years in Operations Management and Technical positions with Shell and NOVA and has significant experience in Operational Excellence and Process Safety. He has excellent planning, organizational, project and people skills, resulting in effective project coordination and successful achievement of business improvement goals. Andy has excellent interpersonal, communication and presentation skills; he is diplomatic, with the ability to influence at all levels within an organization. He has thorough knowledge of and experience with change management. Andy has over 20 years of industrial experience and 12 years of consultancy and training experience in safety and leadership, project and change management. He holds a BEng (Hons) in Chemical Engineering from University of Bradford, UK.

MR. DAN GIBSON is a consulting engineer with over 35 years of experience in production, completions, and well integrity management in the oil and gas fields around the world. After working as a roughneck and roustabout through college, he started his professional life as a facility engineer in Alaska. He has worked his way through the value stream from facilities to completions with jobs in Anchorage, Denver, Houston, Galveston, Singapore, and Sydney, Australia. He is currently a consulting engineer, working on completions and well integrity problems for a wide range of independents and majors. He has worked as a Wells Technical Authority for a large international independent with a varied portfolio of offshore oil and gas wells. He was the first Senior Completion Advisor for a super major. As part of this role, he worked with teams on both major technical incidents and on planning and assurance of high profile projects. These experiences have given him a unique viewpoint of how fields are developed: how wells are designed, constructed, and produced; how things can go wrong with a well during construction and production; and how best to mitigate and manage well problems. He has authored and co-authored a number of papers, ranging from polymer flood management to ice mechanics and most recently a design of an innovative ICD system for a high rate water injection well. Dan graduated from Oklahoma State University, Stillwater and Studied Arctic Engineering at the University of Alaska, Anchorage. His teaching style localizes on first principles and developing an understanding of why things happen which then dictates an appropriate response.

MR. JOSH GILAD, P.E., has 40 years of domestic and international experience in the engineering, analysis, inspection, troubleshooting, forensic investigation and expert witness for marine liquid bulk terminals for oil (crude, products), gas (LNG, LPG), cargo handling and storage facilities, prime movers, piping, and pipelines. His experience includes pipeline flow and hydraulic transient analysis, pipe stress analysis, pipeline on-bottom stability, pipeline integrity & fitness for service assessment. Throughout his career he has managed projects for the worlds largest & Pan-American companies (now CH2M-Hill), and as an independent consultant, Mr. Gilad has been involved in the design and installation of numerous single point mooring (SPM) systems and other offshore petroleum terminals, fixed-berth and offshore cargo transportation systems, pipelines, Process, Energy, and Piping Manifolds (PLEMs), pig launching/receiving and oil storage facilities. Mr. Gilad holds a BS and MS in mechanical engineering from the Technion, Haifa and is a registered Professional Engineer in the States of TX, NY and CA. He is one of a very limited number of registered Professional Engineers in the world and presently a member of PIANC working group, WG153, that is developing recommendations for the design of marine oil terminals.

MR. GERALD GUIDROZ started out as a vibration test engineer for the space shuttle main engines. He then moved into the oil and gas industry on the North Slope on the production side of the business. He worked as a rotating equipment reliability (NERC) consultant, as an oil field construction engineer and specialized on high pressure natural gas storage projects. He has also worked as an engineering manager at Alaska Pipeline on pipeline and tank corrosion monitoring operations. During his career he managed construction involved with projects involving well pads, pipelines, waterflood, and gas injection before moving over to the pipeline side of the business. He was able to transfer some of his vibration experience into solving complex piping and equipment problems as well as developing a corrosion control program at Trans-Alaska pipeline on pipeline and tank corrosion monitoring and repairs and worked as a construction engineer at the Valdez Marine terminal. He then transferred to the refinery side of the business working for multiple clients as an engineering consultant. He has been involved with major refinery upgrades, multiple turnarounds and greenfield projects. He has acted as owner’s engineer on projects including a new spill response barge for drilling in the arctic. Mr. Guidroz has been involved with all phases of projects from FEL/Conceptual Design to Detailed Design through construction. His areas of expertise are in piping specification and design, welding, pressure vessels, heat exchangers, fired heaters, pumps, compressors, drivers, valves, pipelines, and stress analysis. Mr. Guidroz has a broad knowledge base from over twenty 20 years of experience in oil and gas industry.

MR. ROGER HADDAH, P.E., PMP, is a practicing project manager with Occidental Petroleum and has over 25 years of design and project experience in the Oil and Gas and Chemical Industries. He started his career as a structural engineer and progressed from design to construction to project management. He gained his project management skills while working on fast-track projects in North America where he held various positions in project and portfolio management. For the last 10 years, Roger has been managing large offshore and onshore oil and gas projects in the Middle East. With his extensive experience in design, construction, risk management and project controls, he has been managing large project teams and contractors and working with JV partners as well as national oil companies. Roger earned a MS in Structural Engineering and a BS in Civil Engineering from the University of Buffalo, New York. He is currently based in Abu Dhabi, United Arab Emirates.

MR. GERARD HAGEMAN is based in The Hague (The Netherlands), where he settled after 33 years in the downstream oil and gas business (including LNG). He is currently responsible for knowledge management and various gas and refinery operations, start-up, design, process technology, teamwork, change processes, and competency assessment. He started his career with the Gulf Oil Refinery in The Netherlands as a process engineer, followed by a job as a project manager of a condensate fractionator for Gulf and a position as a Senior Manager which he joined Shell for 29 years. During his career with Shell, Mr. Hageman has worked in numerous countries including Malaysia, Thailand, Saudi Arabia, Oman, United Arab Emirates, United Kingdom, Denmark and, of course, The Netherlands. He has been responsible for Process Engineering, Design, Operation, Start-up, Process Safety (Integrity), Interface Management, Change Processes, Competency Assurance and Training. He holds an MS in Chemical Engineering from Twente University in The Netherlands, a master's degree in Chemical Engineering from the Royal Dutch Institute of Engineers. Mr. Hageman joined PetroSkills | John M. Campbell in 2012.

DR. JAMES L. HANER is the head of Ultimate Business Resources (UBR) Consulting, specializing in “Building Better Businesses.” UBR is an independent firm offering business consulting and project management services to Fortune 500 companies in the US, Europe, Africa, and Asia. He is also a senior principal of the Ultimate Business Resources (UBR) Consulting, specializing in business and IT. His responsibilities have included establishing a corporate web presence for a Fortune 500 company, creating a successful organization-wide employee development plan, and developing the IT infrastructure for a start-up company in both project management and leadership roles. He completed his PhD work at the University of Idaho and Cornell University. He earned an MA degree in Management/Leadership from the Claremont Graduate School and took classes with Peter F. Drucker, “the father of modern management.” James is a contributing author of 14 Project Management Tips in 140 Words or Less, 2010; Making Sense of Sustainability in Project Management, 2011; and Program Management: A Lifecycle Approach (2012).

MR. MALCOLM HARRISON graduated in Chemical Engineering in 1981 and completed an MBA in 1985. He has worked on oil and gas projects, petrochemicals, cryogenics and gas monetization. Mr. Harrison has worked for BP, BOC, Foster Wheeler and BG. He was Director of Process Engineering for Foster Wheeler and, most recently, was BG’s Chief Process Engineer. He has travelled a lot, worked on all the continents except Antarctica, visited more countries and encountered more cultures than he can remember. While his foundations are in process engineering, the MBA sparked an interest in corporate strategy, in changing organizations and building high performing teams.

MR. RON HINN is the EVP for Sales and Member Engagement for PetroSkills. He is a people oriented manager, possessing strong leadership and communication skills. He is a professional engineer and registered professional engineer, Ron’s 39-year career has spanned numerous roles including staff engineering, engineering supervision, corporate knowledge management and professional staffing and competency development. Ron is an active supporter of global engineering accreditation activities, having served in multiple roles for ABET up to and including Executive Committee of the ABET Board. Ron received a BS degree from the University of Tulsa in petroleum engineering.

MR. WILLIAM E. HUGHES is the EVP for Sales and Member Engagement for PetroSkills. He is a people oriented manager, possessing strong leadership and communication skills. He is a professional engineer and registered professional engineer, Ron’s 39-year career has spanned numerous roles including staff engineering, engineering supervision, corporate knowledge management and professional staffing and competency development. Ron is an active supporter of global engineering accreditation activities, having served in multiple roles for ABET up to and including Executive Committee of the ABET Board. Ron received a BS degree from the University of Tulsa in petroleum engineering.

MR. RON HINN is the EVP for Sales and Member Engagement for PetroSkills. He is a people oriented manager, possessing strong leadership and communication skills. He is a professional engineer and registered professional engineer, Ron’s 39-year career has spanned numerous roles including staff engineering, engineering supervision, corporate knowledge management and professional staffing and competency development. Ron is an active supporter of global engineering accreditation activities, having served in multiple roles for ABET up to and including Executive Committee of the ABET Board. Ron received a BS degree from the University of Tulsa in petroleum engineering.

MR. WILLIAM E. HUGHES is a practicing lawyer in Tulsa, Oklahoma, who has handled a wide variety of cases involving oil and gas related matters. He has studied in France and lived in Morocco and received a Fulbright Scholarship to teach US and comparative law at the University of Tunis during the 2000-2001 academic year. He teaches courses at the University of Tulsa, including courses in comparative and international law, European Union law,
banking law, US Constitutional law, an introduction to the US law and legal system for non-US lawyers and graduate students. Mr. Hughes is the author of "Fundamentals of International Oil and Gas Law" published by PennWell. He is a graduate of Harvard University Law School.

DR. RODNEY JACOBS is recognized as a worldwide leader in the field of Instrumentation, Automation and Process Control. He has been involved in instrumentation for the last 25 years, presenting over 100 workshops in many countries around the world (with most of them being in countries that have an interest in the oil and gas industries). Apart from in-house and public workshops, he has also presented hundreds of internet-based (engineering) workshops, primarily related to process control and safety. His main area of focus includes PLCs, SCADA, DCS, loop tuning, instrumentation and other areas related to the control of processes. Although his primary focus has always been instrumentation, he does have qualifications in electrical heavy current aspects, and has lectured this at university level. In addition to presenting international seminars, he is also actively involved as a consulting engineer, in his area of expertise. He is a past recipient of the NS&B award, which is one of the highest awards, in the field of Instrumentation, Automation and Process Control. He is a trained electrical engineer from Electrical Engineering, Light Current, he also has an Honors degree in Psychology, and is internationally certified in training and assessment.

MR. ROBIN JENTZ has 38 years of oil and gas processing experience. His work has included most process areas of oil and gas production, including design and testing of low dewpoint glycol dehydration units, analysis of flare and relief systems using dynamic simulation programs, retrofitting gas/liquid separators to increase capacity and eliminate entrainment, and upgrading oil dehydration. Mr. Jentz has worked for both operating and engineering consulting companies. He is a Registered Professional Engineer in Alaska and Washington. Apart from a Doctorate in Electrical Engineering, Light Current, he also has an Honors degree in Psychology, and is internationally certified in training and assessment.

MR. STEPHEN JEWELL is an independent oil and gas consultant and advisor with 30 years' experience in the upstream sector. He was previously the Managing Director and co-founder of Xodus Subsurface Ltd, the Wells and Subsurface company within the Xodus Group of technical consultants. He was also Chief Operating Officer and a founding shareholder of Composite Energy Limited, a European Unconventional Gas company, growing the company from seed capital of $500k to an ultimate sale of over $300 million in 2008. He has over 16 years' experience with Amerada Hess starting as petroleum engineer and progressing to Acting General Manager of its North Sea Operations Base. He received a BEng (Honors) degree in Electronic Engineering from the University of Sheffield and speaks Norwegian and French.

MR. SATISH K. KALRA is a petroleum engineer with over 25 years of management, operations, teaching, research, and consulting experience with national and private oil companies. As an Associate Professor of Petroleum Engineering, he taught graduate and undergraduate students at the University of Southwestern Louisiana, Lafayette. He also worked for the University of Texas at Austin. His career includes associate professorship at the National University of Malaysia (India), ARCO Offshore (now BP), BJ Services, Agio Oil and Gas, Schlumberger Holditch, Miller and Lents and SKALTEX Corporation. He is widely published in technical literature and was the Chairman of the National SPE Committee on Monographs. His technical experience includes the design and supervision of production and well completion operations, formation damage and sand control, reservoir management, technology transfer and contract negotiations. He actively participated in several technology transfer agreements with various oil companies. Other technical experience includes general contractor, manager, consultant, and owner. He is fluent in English, Russian, and several Indian languages. Recently he was nominated as a member of the Russian Academy of Natural Sciences US Section. He received an M.S. and Ph.D. in petroleum engineering from the University of Petroleum and Chemical Engineering, India, and a degree in law from Gujarat University, India.

DR. MOHAN G. KELKAR is a professor of petroleum engineering at the University of Tulsa in Tulsa, Oklahoma. His main research interests include reservoir characterization, production optimization, and risk analysis. He is involved in several research projects, which are partially funded by various national and international oil companies, the US Department of Energy, and the Oklahoma Energy Research Center for Advanced Energy Systems. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation. He has taught various short courses for many oil companies in Canada, Indonesia, Singapore, Nigeria, Kuwait, Abu Dhabi, Scotland, India, Denmark and across the United States. He has been a consultant to many oil companies, as well as to the US Department of Energy and National Science Foundation.
Mr. Morgan is a registered Professional Engineer in the State of New Hampshire. He is a Senior Member of the Advisory Board of the Laurance Reid Professional Engineer in the State of New Hampshire. He is currently employed at the Alberta Government, Department of Energy in Edmonton. He has a BS in geology, an MS in geophysics from Michigan State University. He is a practicing petroleum geophysicist. His background includes 21 years with Texaco, Inc. and Getty Oil Company in the areas of production and completions engineering. Specialties include field operations, reservoir engineering, and teaching industry courses in: Saudi Arabia, Malaysia, India, Argentina, Venezuela, and the US. Dr. Notz has conducted extensive research into the behavior of multiple-phase reservoirs, and has published numerous technical papers and reports on the subject of petroleum reservoir engineering.

Mr. Ronny Norvell was the President and Managing Partner of Management Paradigms, a U.S. based consulting firm specializing in management and leadership development. Over the past forty years he has provided services to many Fortune 500 companies and foreign subsidiaries of U.S. and foreign companies, managed the training functions of two major corporations, and served as a college administrator and instructor. Ronnie has served on the Board of Directors of three international organizations including the American Society for Training and Development and PetroSkills. He has also served on the corporate advisory faculty of the University of Texas at Dallas and on the adjunct faculty of the University of Nebraska's MBA program. Ronnie has authored numerous publications, designed and conducted a variety of workshops targeted at enhancing management and employee productivity. He co-authored The Internal Outplacement Handbook and A Trainer's Guide to Performance Appraisal. His peers have recognized him on numerous occasions. The American Society for Training and Development recognized Ronny Norvell for his professional contributions by awarding him with one of their highest honors, the "Torch" award. The Dallas Chapter of ASTD recognized him as the "Professional of the Year" in 1992 and his alma mater, Texas A&M University, at Commerce, selected him as a "Distinguished Alumni" in 1990. Ronnie Norvell is an offshore industry consultant for flow assurance issues. He worked as a chemical engineer for the Woodward Division of General Electric Company of Houston, Texas. He was a reservoir engineer for Getty Oil Company/Texaco/Chevron from 1978 to 2002. He worked for offshore engineering and construction firms, Doris Inc. (2002-2004) and Technip USA (2004-2006) as flow assurance manager. While at Getty/Technip, he taught and managed projects on floating, reservoir engineering, carbon dioxide flooding, reservoir fluid properties and flow assurance to operators in the US, UK, Ecuador and Saudi Arabia. He was Texaco's representative on the GPA research committee, the Colorado School of Mines Gas Hydrates Consortium and the DeepStar Flow Assurance Committee. Dr. Notz has a BS from the University of Wisconsin in Chemistry (Chemical Engineering minor) and a PhD from Michigan State University in Analytical Chemistry.

Mr. William K. Ott is an independent petroleum consultant and is the founder of Well Completion Technology, Inc. He is a consultant to major international petroleum industry consulting firms, and was a member of the management team of a major international petroleum industry training firm established in 1986. Before consulting and teaching, he was division engineer for Halliburton's Far East region based in Singapore and a research field coordinator for Halliburton in Oklahoma. He works regularly with and on wells requiring various well completions techniques, principally in East Asia. He has conducted technical petroleum industry courses worldwide and written numerous technical papers relating to well completion and workover operations. He is a registered professional engineer in Texas, and a 25-year member of SPE. He received a B.S. in Chemical Engineering from the University of Missouri.

Mr. John Robert (Bob) Nicholas is President of Petrobobs Consulting Limited, located in Sherwood Park, Alberta, Canada. He has over 35 years experience in the broad area of petroleum engineering and training. Mr. Nicholas has over 25 years of experience in leading and conducting projects of various sizes and scopes involving the application of decision and risk analysis methodologies in the petroleum industry, and is a registered Professional Engineer in Alberta. His experience includes working as a practicing petroleum geophysicist. His background includes work in decision analysis, risk analysis, business modeling, financial forecasting, strategic planning, R&D portfolio management, software development, geology, and geophysics. He has over 40 years of experience in decision analysis, economics and quantitative modeling. He has a BS in geology, an MS in geophysics from Michigan State University, and an MBA from Rice University.
undergraduate and graduate courses at the University of Tulsa and various universities in South America. Dr. Palacios holds a U.S. Patent # 7,942,200 for a Downhole Chemical Dispersion Device. He leads technical committees in NACE International to develop Standard Practices. He is a recipient of the NACE Distinguished Service Award in March 2013. He has also served as International Director for the NACE Foundation from 2005 to 2013.

MR. WILLIAM (BILL) E. POWELL is an oil and gas professional with over 30 years of experience in field operations, technical sales, marketing, and management with oil and gas companies. He has managed source. A comprehensive knowledge of the relevant industry standards including US, EEMUA, and API ensures that all projects are undertaken with a high degree of discipline icon legend on page 34
Our Instructors

MR. JOHN C. SCRUTON-WILSON is a founding faculty member of the BP Financial University responsible for developing and delivering finance and economic evaluation training throughout the BP organization. His leadership in negotiation was displayed by developing a consensus position with ExxonMobil and ConocoPhillips in agreements for the Alaska Gas Pipeline as well as shoring $20 billion of Federal Loan guarantees and tax benefits for the pipeline. He is experienced in project finance having completed agreements with the International Finance Corporation to finance a chemical plant expansion in Brazil along with CDI and an international bank. Mr. Scruton-Wilson has established himself as a leader in the oil and gas industry by holding various management/leadership positions during his career. He has an MA in Theology from Fuller Theological Seminary, an MS in Agricultural Economics (major in Marketing) from Cornell University and an MBA in Finance and International Studies from the University of Chicago.

MR. KYLE TRAVIS is a Petroleum Engineer with 32 years of diversified experience in the oil and gas industry. He has a proven track record of effectively building oil and gas companies from infancy to significance. His experience includes managing oil and gas companies from the initial formulation of a business plan and establishment of goals through to execution of such. He has built and supervised a staff of experienced oil and gas professionals, evaluated drilling prospects, acquired producing properties, managed the operations of drilling and the production of oil and gas properties. He is experienced in all phases of petroleum engineering including economics, drilling, logging, analysis, completion, production and reservoir. He has a BS degree in Petroleum Engineering from the University of Oklahoma.

DR. KATINKA C. VAN CRANENBURGH is a founding partner of Community Wisdom Partners (CWP), a consultancy specializing in the creation of mutually beneficial relationships between business and societal actors. For over 16 years, she has contributed to Heineken’s social performance policy and program, focusing on developing countries and complex environments. She created the Heineken Africa Foundation, a corporate philanthropic arm, responsible for the design and implementation of 45 health-care projects at a value of several million euros. In her last position as global employees’ and human rights manager, she contributed to Heineken’s global practice in non-technical (or societal) risk management. This included training commercial, human resources, public affairs and business managers, and executives in corporate social responsibility and proactive response to pressures and challenges from the external world. Katinka’s academic background, including her PhD dissertation on how institutions manage business ethics, provides a solid theoretical foundation to all the practical work she does. At CWP she focuses on online and in-house training and consultancy coaching of business managers. Katinka is a columnist at The Post Online and is authoring a book with the working title “Between Manager and Human Being.” She has a PhD in Management from the Rotterdam School of Management and an International MBA from the HES, University of Amsterdam.

MR. PAUL VERRILL has over 25 years’ experience working in the chemicals, petrochemicals, hydrocarbon processing and power sectors. He has held a number of technical and senior management positions including Mechanical and Piping Designer, Machinery Engineer, Project Manager, Engineering and Maintenance Manager and other Senior Plant and Business Management roles. He has worked for a number of international engineering and engineering companies including ICI, Rolls Royce and Enron E & C. His experience includes piping and mechanical equipment design, rotating equipment engineering, project management, gas processing project development including FEED study management and operations and turnaround management. For the previous 3 years Mr. Verrill has been working in the senior management team of an 800mmscf gas processing facility which has been developing the onshore assets for a new UK gas field. In 2011 Mr. Verrill started working with JM Campbell as an Instructor in addition to providing project development and asset management services through his own consultancy company. Mr. Verrill is based in Yorkshire, England and graduated with a BEng degree in Mechanical Engineering from Newcastle University and he is a Chartered Member of the Institute of Mechanical Engineers.

MR. COLIN WATSON has over 41 years’ broad experience in petrochemicals, primarily in engineering support and process safety management. He joined PetroSkills as an instructor in 2014. His experience includes assignments in technical support, operations, turnarounds, project execution and HSE and engineering management. From 2000 he has worked as an independent Engineering and Process Safety Consultant working with oil and gas clients. He has worked primarily with BP to design, develop and facilitate their global Process Safety training and awareness programs both for engineering and operations teams. In a variety of 28 years with BP, he has also worked to develop strategic structures and governance systems to manage Process Safety and Integrity Management for the BP Grangemouth Complex and the European BP Chemicals Sites. His operations experience providing technical support and engineering management extends across a variety of petrochemical and refining processes. He holds a BSc in Engineering Science (Mechanical) from Edinburgh University (1978) and is a Chartered Engineer with the Institute of Mechanical Engineers.

MR. STUART WATSON has over 18 years of experience in oil and gas processing. His experience has taken him to facilities around the world in regions including Africa, Australia, the Middle East and the US. Mr. Watson graduated with honors in 1995 from Curtin University, Perth, Australia, with a BS in Mechanical Engineering. After graduating he worked in Perth, Australia supporting Woodside’s offshore facilities. In January 2000, Stuart accepted a position with Pearl Development Company of Colorado where he worked over the next eight years at many of the gas production and processing facilities in the western US. His work included expansions for Unocal Alaska, facilities engineering at the El Paso Field Service’s 650MMscfd Chugwater Plant, and new projects in Colorado and Wyoming. In 2008, he oversaw and commissioned a 92MMscfd amine sweetening and cryogenic NGL train for the Government of Ras Al Khaimah (UAE). Thereafter, he started his own engineering consulting and support company, Watson Engineering. In 2009 he started instructing part time for John M. Campbell and Co. in mechanical engineering and operator training. Currently, Mr. Watson supports PetroSkills in a full time role to ensure technical and quality assurance in IOS, Pipeline, Mechanical and Offshore engineering.

MR. PETER WILLIAMS has over 35 years of industrial experience, most of which were in oil and gas processing. His experience includes plant process engineering, operations supervision, project development and business case definition, project technical support, plant engineering management, and internal consulting, primarily with Saudi Aramco. Canadian experience includes plant engineering in phosphorus production, heavy water, and bitumen upgrading, and project engineering. He also has experience with benchmarking, implementation of a safety management system, and the application of lean Sigma methods to engineering management. He has Masters’ degrees in Chemical Engineering and in Economics, is a Professional Engineer in Alberta and is certified Six Sigma Black Belt.

MR. WES WRIGHT has 32 years’ experience in oil and gas producing facilities. Mr. Wright began teaching with PetroSkills in 2004 where he has been delivering courses in CO2, Surface Facilities, Oil and Gas Processing and Operator Training world-wide. Previously, Mr. Wright was the lead on-site engineer at the Weyburn CO2 Miscible flood where he was closely involved in the development, design, construction, start-up and operations. Through the 1980’s, Mr. Wright performed contract research at the University of Calgary in Engineering and in 1992 he was a consultant supplying a wide range of sweet and sour oil and gas projects throughout Western Canada. Mr. Wright graduated in 1983 with a BSc in Engineering from the University of Calgary. He is a Professional Engineer in Alberta, Canada and is a member of the SPE. He has been published in the ASME-OMAE, CSCE, IAHR, and in Carbon Sequestration and Related Technologies (Wiley, 2011).
To register for a course, or for questions on in-house training or any of our other solutions, contact our Customer Service Department at +1.918.828.2500 or training@petroskills.com.

CUSTOMER SERVICE
Tulsa...................... +1.918.828.2500
Toll-free...............+1.800.821.5933
training@petroskills.com

PETROSKILLS CONFERENCE CENTER
Houston...............+1.832.426.1200

CERTIFICATES, PROFESSIONAL DEVELOPMENT HOURS (PDH), AND CONTINUING EDUCATION UNITS (CEU)

A Certificate of Completion is awarded to each participant who satisfactorily completes the course and will be awarded by the instructor(s) on the final day.

PetroSkills® course hours can be used to satisfy PDHs for licensed engineers in most US states. In many instances, course hours can be used for international CEU credit also. Every course certificate tells the number of CEUs earned and also can be used to submit to your licensing board or accrediting body for approval.

TERMS AND CONDITIONS

REGISTRATION AND PAYMENT

It is recommended participants register early due to limited seating. However, registrations can be submitted up to the last business day before class provided there are seats available. Registrations are confirmed when payment is received. Payment is due upon receipt of invoice and no later than 30 days before class. For registrations submitted less than 30 days before class, payment is due immediately otherwise a seat in the course cannot be guaranteed. Tuition fees are due and payable in US dollars. Please contact the Customer Service Department customerservice@petroskills.com if you cannot meet the payment requirements as registrations are not automatically cancelled when payment is not received.

TUITION FEES

Tuition fees include tuition, course material, daily refreshments and a non-refundable registration fee of $100.00 (USD) per five days of training or less. As a reminder a seat in the course is not confirmed until payment is received. Please note tuition fees do not include living costs. Participants are responsible for booking and paying for their own hotel accommodations. When possible, PetroSkills will reserve a block of sleeping rooms at suggested hotel(s). Participants should contact the suggested hotel directly at least three weeks before the course begins. Remember to mention PetroSkills and/or the course title to receive a discounted rate, if applicable.

Note: Where applicable due to government regulations, Goods and Services Tax (GST) or Value Added Tax (VAT) will be added to the total tuition fees. For events in the UK, the merchant of record contracting with cardholder is PetroSkills UK Limited, a UK entity. For events in Canada, the merchant of record contracting with cardholder is PetroSkills Canada Inc., a Canada entity. For events in Australia and the UAE, the merchant of record contracting with cardholder is PetroSkills LLC, a United States entity.

CANCELLATIONS, TRANSFERS, SUBSTITUTIONS, AND REFUNDS

A minimum of 30-day notice is required to cancel or transfer otherwise the tuition fee is forfeited or remains due if not already paid. Cancellation requests received 30-days or greater before class will be honored and tuition refunded, less the non-refundable registration fee mentioned above, provided there were no previous late requests to transfer. Transfer requests received 30-days or greater before class will be honored and tuition is transferrable provided there were no previous late request to transfer. Note: should there be a difference in tuition, the difference will be due. Only one transfer per initial registration is permitted.

Late requests to transfer into a future session of the same course will be considered provided the tuition is paid and the requested session is open for enrollment.

Substitutions of participants are permitted at any time without penalty. Please contact the Customer Service Department customerservice@petroskills.com if you need to cancel, transfer, or make a substitution.

Transfers and cancellations will not be honored, and tuition is forfeited for courses that have reached maximum participation regardless of the amount of notice given. PetroSkills reserves the right to cancel any course session at any time. The decision to cancel is generally made approximately two weeks before class. When a course cancels registered participants will be given the opportunity to transfer to another course or receive a full refund, provided the enrollment was not transferred into the cancelled course late. Keep this in mind when making travel arrangements (airline tickets, hotel reservations, etc.), as PetroSkills cannot be responsible for any fees incurred for cancelling or changing your travel arrangements.

We reserve the right to substitute course instructors as necessary.

DISCLAIMER

PetroSkills reserves the right without payment of consideration to videotape, film, photograph and/or record course sessions and course participants in any media type and to alter or edit these images for use in its publications, including website entries.

The use of any recording device (audio or video) by participants during a PetroSkills course is strictly prohibited. The unauthorized use of a recording device during a PetroSkills course presentation shall be grounds to remove the participant and confiscate or destroy the related recording. No portion of any PetroSkills course may be recorded digitally, on film, video tape, audio tape or other recording device or be reproduced photographically or by any sight or sound device. All PetroSkills course presentations are the sole property of PetroSkills.
PetroSkills Blended Learning Skill Modules™ combine industry knowledge, expertise, content, and technology to develop workforce competency with the added benefit of:

✓ **Reduced time to competency**
✓ **Eliminated travel expense**
✓ **Flexibility—less time away from work**
✓ **Learning applied at point of need**

Courses Available Now:
- Applied Reservoir Engineering
- Basic Drilling, Completion, and Workover Operations
- Basic Geophysics
- Basic Petroleum Technology Principles
- Basic Reservoir Engineering
- Basics of Rotating and Static Mechanical Equipment
- Casing Design Workshop
- Completions and Workovers
- Foundations of Petrophysics
- Gas Conditioning and Processing Principles
- NODAL Analysis Workshop
- Process Safety Engineering
- Production Logging
- Production Operations 1
- Production Technology for Other Disciplines
- Scale Identification, Remediation and Prevention Workshop

Coming Soon: Pipeline, Drilling Principles, Geomechanics, Petroleum Geology, and ICE.

For more information, please visit petroskills.com/blended