Heavy oil is a large component of the world’s oil resource. Commercial mining and current in-situ thermal production methodologies are important contributors to the world’s oil production. These technologies are reasonably recent commercial applications, and the future levels of production face uncertainty because of highly debated environmental challenges. PetroSkills Heavy Oil courses cover the exploration and development of these resources with practical, real-world instruction and content.

The following instructors have been selected and approved by the PetroSkills Curriculum Network:

| Mr. Satinder Chopra | Dr. Chris Gala | Mr. Rafael Gay-de-Montella | Dr. Gary Massingill | Mr. Mehrdad Soltanzadeh |

| Production and Completions Engineering | Reservoir Modeling of Heavy Oil Resources - HORM (P2) | Water Management in Heavy Oil Resource Operations - HDAM (P2) |

| Geophysics | Geology | Petrophysics | Reservoir Engineering | Well Construction / Drilling | Production and Completions Engineering |

| Geophysical for Heavy Oil - HDOM (P2) |

| Geological and Geophysical Characterization of Heavy Oil Reservoirs - HDRC (P2) |

| Evaluating and Developing Heavy Oil Resources - HODE (P2) | Field Study Heavy Oil Reserves - HDFS (P1) |

| Overview of Heavy Oil Reserves - HDOV (P2) |
Evaluating and Developing Heavy Oil Resources – HOED

FOUNDATION 5-Day

Cold production, oil sands mining and in-situ thermal production methodologies are important contributors to the world’s oil production. The course takes an unbiased practical approach to the applications, citing benefits and limitations. The course provides an overview and details of specific occurrences of the geology, evaluation, development and commerciality of heavy oil/in-situ oil sands resources. Each attendee should come away with a great foundational knowledge of the business of evaluating and developing heavy oil resources.

DESIGNED FOR
Anyone from any discipline who needs a better understanding of heavy oil/oil sands resources, but more specifically designed for geoscientists or engineers with a need to better understand the challenges of evaluating and developing heavy oil/oil sands resources.

YOU WILL LEARN HOW TO
• Evaluate and develop heavy oil/oil sands resources
• Understand the importance of heavy oil/oil sands resources in today’s world energy market
• Contrast heavy oil/oil sands resources as compared to conventional and other unconventional resources with aspects of finding, developing, and producing
• Understand the geology, critical attributes, and commerciality of the Canadian heavy oil/oil sands
• Collect the appropriate data and evaluate the critical geologic and reservoir parameters of various types of heavy oil/oil sands resources
• Recognize and evaluate the environmental challenges required to develop and produce heavy oil/oil sands resources
• Understand the process and methodology to evaluate, select, plan, design, and implement a heavy oil/oil sands recovery project
• Become knowledgeable of the worldwide distribution and geologic setting of the more significant heavy oil occurrences

COURSE CONTENT
Bitumen and heavy oil introduction and definitions • Comparison of conventional and unconventional reservoirs • Worldwide heavy oil/oil sands resources and occurrences • Geology and overview of Venezuela and Trinidad heavy oil resources • Introduction of United States heavy oil occurrences (Utah, California, and Texas) • Geology, history, and development of Canada heavy oil/oil sands • Heavy oil/oil sands characteristics and development strategies • Oil sands mining details and reclamation • Environmental challenges for oil sands resources • Heavy oil and in-situ oil sands recovery process review • Introduction to Steam Assisted Gravity Drainage (SAGD) • Other commercial thermal in-situ methodologies • Commercial application of Cold Heavy Oil Production with Sand (CHOPS) in Canada and other non-thermal heavy oil recovery methods • Field examples and development strategies of heavy oil and in-situ oil sands recovery projects • Overview of thermal well completions and production facilities • Reserves and economics

Field Study – Heavy Oil Resources – Hofs

BASIC 3-Day

FIELD TRIP
This course is geologically and technically focused but instructed in such a manner that all disciplines and experience levels will understand. Technologies for mining and in-situ production of bitumen from the Athabasca oil sand region are reasonably recent commercial applications and the future levels of production face uncertainty because of highly debated environmental challenges. The field course takes the participant to the rock, explaining complex relationships and issues emanating from the depositional and structural framework.

DESIGNED FOR
Anyone of any discipline who wants a hands-on understanding of the Athabasca Oil Sands.

YOU WILL LEARN
• How to understand the depositional and stratigraphic framework of the McMurray Formation
• How to understand the structural setting and relationships of timing, emplacement and preservation of Alberta’s bitumen/heavy oil resource
• The complex lithologic heterogeneities of the McMurray and their effect on mining and in-situ production
• To appreciate the challenges and progress of environmental preservation efforts for the development and production of Alberta’s bitumen resource

COURSE CONTENT
Overview of the geology, history and development of Canada oil sands • McMurray oil sand stratigraphy • Depositional details of the McMurray formation • Overview of structural evolution and bitumen resources • Oil sand mining methodology • Environmental challenges for Alberta’s bitumen resource • Current status and future plans for reclamation mining activities

Geological and Geophysical Characterization of Heavy Oil Reservoirs – Horc

BASIC 3-Day

With conventional hydrocarbon resources growing thinner, heavy oil and bitumen are being looked at as the next resource that could be exploited in the near future. As both heavy oil and bitumen are a global resource, they are fast becoming an asset base for many energy companies. Economic development of heavy oil reservoir requires accurate characterization of the rocks as well as the fluids contained therein. As heavy oil properties are different from conventional oil, its exploration and production requires special seismic strategies and rock physics models. Geophysical characterization of heavy oil reservoirs is therefore at the heart of production of this resource.

DESIGNED FOR
Seismic interpreters, seismic processors, stratigraphers, structural geologists, and reservoir engineers.

YOU WILL LEARN
• Evaluation of the available reservoir characterization options, and selection of the options suitable for the project
• To apply the appropriately chosen techniques to your data to extract meaningful information
• To evaluate the application of the various techniques discussed during the course
• The sweet spots within the reservoir zone based on characterization with application of different attributes
• To integrate the different attribute applications to generate a comprehensive characterization of the zone of interest

COURSE CONTENT
Mechanisms for the formation of heavy oil • General phase behavior of hydrocarbons and heavy oil • Properties of heavy oil and rock physics analysis • Geophysical approaches to characterization of heavy oil reservoirs • Measuring and monitoring heavy oil properties • Methods of extraction of heavy oil (CHOPS, SAGD, etc.) • Challenges for heavy oil production • Seismic monitoring of hot and cold heavy oil production • Optimization of Canadian heavy oil production through reservoir characterization • Environmental issues • Jeopardy exercises on each of these units

Overview of Heavy Oil Resources – Hovv

BASIC 2-Day

This course is sufficiently detailed and widely focused to appeal to a broad audience, including non-technical, administrative, and business groups, as well as scientists and engineers, seeking an introduction to the business of heavy oil. Heavy oil is a large component of the world’s oil resource. Commercial mining and current in-situ thermal production methodologies are important contributors to the world’s oil production. These technologies are reasonably recent commercial applications, and the future levels of production face uncertainty because of highly debated environmental challenges. This course takes an unbiased practical approach to the recent commercial applications of commercial mining and in-situ thermal production of heavy oil resources, citing benefits and limitations. The course provides an overview of the aspects of the geology, development and commerciality of heavy oil resources. This course contains exercises and class problems to support the presentation.

DESIGNED FOR
Anyone from any discipline who needs a better understanding of heavy oil resources.

YOU WILL LEARN
• The geologic and engineering challenges to finding, developing, and producing heavy oil resources
• About the importance of heavy oil resources in today’s world energy market
• How to evaluate the challenges and opportunities for understanding and improving the environmental footprint required to develop and produce heavy oil resources
• The contrast between heavy oil resources versus conventional and other unconventional resources with aspects of finding, developing, and producing
• The geologic and methodology to plan, design, implement, and evaluate heavy oil reservoirs
• About the geology and commerciality of the Canadian Oil Sands
• About the world-wide distribution and geologic setting of the more significant heavy oil occurrences including Venezuela

COURSE CONTENT
Comparison of conventional and unconventional reservoirs • Worldwide heavy oil resources and occurrences • Bitumen and heavy oil definitions and introduction • Geology, history, and development of Canada oil sands • Oil sand characteristics and development strategies • Oil sand mining details and reclamation • Environmental challenges for oil sands resources • Heavy oil and in-situ oil sands recovery process review • Introduction to Steam Assisted Gravity Drainage (SAGD) • Other commercial thermal in-situ methodologies • Commercial application of Cold Heavy Oil Production with Sand (CHOPS) in Canada and other non-thermal heavy oil recovery methods • Field examples and development strategies of heavy oil and in-situ oil sands recovery projects • Overview of thermal well completions and production facilities • Reserves and economics

2019-2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Course</th>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOED</td>
<td>CALGARY, CAN</td>
<td>22-31 JULY 2020</td>
<td>$4395+GST</td>
</tr>
<tr>
<td>Hofs</td>
<td>CALGARY, CAN</td>
<td>24-26 AUG 2020</td>
<td>$6275+GST</td>
</tr>
<tr>
<td>Horc</td>
<td>CALGARY, CAN</td>
<td>25-27 MAY 2020</td>
<td>$3205+GST</td>
</tr>
<tr>
<td>Hovv</td>
<td>CALGARY, CAN</td>
<td>26-28 AUG 2020</td>
<td>$2575+GST</td>
</tr>
<tr>
<td>Hovv</td>
<td>CALGARY, CAN</td>
<td>26-28 AUG 2020</td>
<td>$2575+GST</td>
</tr>
</tbody>
</table>
Geomechanics for Heavy Oil – HOGM

FOUNDATION 3-Day

This course introduces an integrated workflow for reservoir containment evaluation and caprock integrity assessment in thermal operations such as SAGD and CSS in heavy oil reservoirs. The essential fundamentals of petroleum-related rock mechanics will be presented, and the processes of data collection, geomechanical characterization, and building Mechanical Earth Models (MEMs) will be discussed in details with an emphasis on data uncertainty. The course provides a comprehensive picture of the geomechanical behavior of heavy oil fields in response to thermal operations and shows how different modeling approaches may be implemented to predict this behavior and its associated geomechanical risks. It presents the application of modeling in mitigating the adverse effects of these risks and determining safe operating criteria such as maximum operating pressure. Different aspects of field monitoring and real-time updating are discussed. Several case histories and in-class exercises help participants grasp a practical perception of the course materials.

DESIGNED FOR
Geoscientists and reservoir engineers involved in heavy oil plays.

YOU WILL LEARN
- How to implement principles of rock mechanics and petroleum geomechanics in evaluation of reservoir containment in thermal operations

COURSE CONTENT
- Reservoir containment evaluation
- Caprock integrity assessment
- SAGD and CSS in heavy oil reservoirs
- Fundamentals of petroleum-related rock mechanics
- Processes of data collection
- Geomechanical characterization
- Mechanical Earth Models (MEMs)

You Will Receive:
- Complimentary learning and development resources
- Information on new courses and instructors
- Additional public course locations and dates
- Invitations to PetroSkills events and conferences

Simply go to petroskills.com/EmailSignUp

Reservoir Modeling of Heavy Oil Resources – HORM

INTERMEDIATE 3-Day

As conventional oil reserves decline, more emphasis is placed on heavy oil and bitumen. Heavy oil and bitumen are plentiful in many developed oil provinces, as well as in areas with no conventional oil. As with conventional oil, the reservoir engineering aspects of the development of heavy oil and bitumen are aided by modeling of various kinds. For heavy oil and bitumen, the modeling is complicated by the high oil viscosity and the need for enhanced oil recovery techniques, usually involving heating of the reservoir to produce the oil at commercial rates. In this course, modeling is understood as a part of reservoir engineering and includes the use of analogues and analytical modeling, as well as numerical simulation. The emphasis is on numerical simulation, but analytical techniques are also examined in some detail, since they provide considerable insight into the recovery process. The emphasis of the course is on how to perform a successful heavy oil simulation study, including factors to be considered, pitfalls to avoid, testing of models, examination of output, and ensuring results are reliable.

DESIGNED FOR
Petroleum and reservoir engineers who will be actively working on studies, and be involved in assessing the results of studies.

YOU WILL LEARN HOW TO
- Select the type of modeling required to meet the aims of the study
- Design different types of modeling studies to achieve the aims of the study (feasibility, operating strategy, development plan, ultimate recovery, etc.)
- Collect and select the data for the study
- Incorporate field observations into the study (production data, pressure data, 4D seismic, observation well data)
- Set up, run, and test the model(s)
- Assess the adequacy of the history match(es)
- Create and run different development options and assess the results
- Assess the results of third party studies (in-house or external)

COURSE CONTENT
- Introduction (definitions of heavy oil, types of study, complex modeling, design of study, grid orientation and design of study)
- Reservoir engineering and reservoir characterization (overview of reservoir engineering techniques and their limitations for heavy oil, types of geological models, introduction to geostatistical models)
- Rock and fluid data for heavy oil (oil viscosity, thermal properties of reservoir materials, temperature dependence of relative permeability, etc.)
- Non-thermal recovery of heavy oil (cold heavy oil production with sand, chemical flooding, remediation, enhanced gas injection)
- Thermal recovery using steam (cyclic steam stimulation, steamflood, steam-assisted gravity drainage)
- Thermal recovery without steam (in-situ combustion, electrical heating, hot water flood, steam with additives)

Water Management in Heavy Oil Resource Operations – HOWM

INTERMEDIATE 3-Day

This course will review basics of heavy oil extraction, characteristics, quantities, and typical ratios of waters in heavy oil extraction. It will review alternative discharge limitations, offshore discharge, and treatment for well injection. Suspended and oil/crude separation, with traditional and new equipment, will be covered. The course will review the scientific basis and principles of softening, lime softening, hot oil/water separation, strong acid exchange (SAC), weak acid exchange (WAC), ion exchange, boiler feed water chemistry (including once through steam generator), and cooling tower cases. Technologies for produced water recovery will be discussed.

DESIGNED FOR
Central processing facility operators and process designers dealing with heavy oil produced water separation, recovery, and treatment for reuse or disposal. Personnel involved in establishing, improving, optimizing, or supervising the implementation of technology improvements. This course will be useful to managers in completion, production, and optimization of operations. The course is a great reference parameter for water technologies in mining and heavy industry, with some examples of cases and treatment for discharge and spills.

YOU WILL LEARN HOW TO
- Understand and analyze technology options, advantages, and limitations
- Choose the most advantageous technology given the site conditions
- Design or specify the equipment capable to fulfill the operations intended
- Optimize design conditions and operating efficiency
- Choose suppliers when comparing basic principles and design
- Synthesize and define the applicability conditions of technologies
- Troubleshoot field situations, learned from field cases, discussions, and debates in class
- Understand water mass and ionic/solids balance
- Estimate and calculate equipment requirements, predesign and specify equipment
- Predict efficiencies or performance of equipment, anticipate remediation of spills

COURSE CONTENT
- Heavy oil review and basic definitions, heavy oil around the globe
- Thermo-extraction produced water, the process (SAGD and CSS) ratios: De-oiling technologies, blending, diluents, evaporation, and future
- Alkalinity and hardness concepts, softening and silica removal, hot and warm lime softening
- Ion exchange softening technology, SACs and WACs technologies, the in and out of vessel regeneration, boiler feed water final treatment, standard requirements and chemical conditioning
- Evaporator alternatives and zero liquid discharge technology
- Mining bitumen extraction, tailings pond, process affected waters, their treatment and reuse
- Cooling tower requirements, water conditioning, and treatments
- Deep well injection of waste water: requirements and treatment

2019-2020 Schedule and Tuition (USD)

2019-2020 Schedule and Tuition (USD)

2019-2020 Schedule and Tuition (USD)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALGARY, CANADA</td>
<td>7-9 OCT 2019</td>
<td>$3205+GST</td>
</tr>
<tr>
<td>CALGARY, CANADA</td>
<td>5-7 OCT 2020</td>
<td>$3250+GST</td>
</tr>
<tr>
<td>CALGARY, CAN</td>
<td>15-17 JUNE 2020</td>
<td>$3250+GST</td>
</tr>
<tr>
<td>CALGARY, CAN</td>
<td>7-9 SEP 2020</td>
<td>$3250+GST</td>
</tr>
</tbody>
</table>
DO YOU HAVE TEAM TRAINING NEEDS? WE CAN HELP!

In-house courses deliver private, on-site training to your group, whenever, wherever, and however you need it.

Save time, money, and travel hassles by bringing our course to your site, or any location that suits you.

If you do not have enough participants for an in-house session, we may be able to schedule an on-demand public session in your location.

For more information, or to reserve training for your team, go to petroskills.com/inhouse
TO VIEW OUR COURSES IN OTHER DISCIPLINES, VISIT:

Subsurface
- Introductory and Multi-Discipline
- Geology
- Geophysics
- Petrophysics
- Reservoir Engineering
- Well Construction/Drilling
- Production and Completions Engineering
- Unconventional Resources
- Petroleum Data Management

Facilities
- Gas Processing
- Process Facilities
- Offshore & Subsea
- Pipeline Engineering
- Instrumentation, Controls & Electrical
- Mechanical Engineering
- Reliability Engineering
- Procurement/Supply Chain Management
- Refining

Operations & Maintenance

Health, Safety, Environment

Petroleum Business and Professional Development
- Petroleum Professional Development
- Petroleum Business
- Project Management

SIGN UP FOR PETROSKILLS EMAILS
PetroSkills Blended Learning Skill Modules™ combine industry knowledge, expertise, content, and technology to develop workforce competency with the added benefit of:

- **Reduced time to competency**
- **Eliminated travel expense**
- **Flexibility—less time away from work**
- **Learning applied at point of need**

Courses Available Now:
- Applied Reservoir Engineering
- Basic Drilling, Completion, and Workover Operations
- Basic Geophysics
- Basic Petroleum Technology Principles
- Basic Reservoir Engineering
- Basics of Rotating and Static Mechanical Equipment
- Casing Design Workshop
- Completions and Workovers
- Foundations of Petrophysics
- Gas Conditioning and Processing Principles
- NODAL Analysis Workshop
- Process Safety Engineering
- Production Logging
- Production Operations 1
- Production Technology for Other Disciplines
- Scale Identification, Remediation and Prevention Workshop

Coming Soon: Pipeline, Drilling Principles, Geomechanics, Petroleum Geology, and ICE.

For more information, please visit petroskills.com/blended